Optimized Democracy

Spring 2021, Lecture 9, 2021-02-24

Participatory Budgeting

Dominik Peters, Harvard University
Outline

• Aside on Single Transferable Vote
• More on approval-based committee elections: Phragmén’s rule
• Participatory Budgeting

• Repeating theme: Can get proportionality by explicitly dividing “voting power” equally among voters. (Rather than magically proportional PAV.)
Single Transferable Vote
Single Transferable Vote for Committees

• STV can also be used to elect a k-committee.
• Initially, each voter gets a ‘budget’ of 1.
• It costs $\frac{n}{k}$ to elect a candidate.
• As long as there is a candidate that is ranked first by voters who together have at least $\frac{n}{k}$, elect the candidate and charge those voters $\frac{n}{k}$.
• Otherwise, eliminate the candidate whose supporters are poorest, and repeat.
• Exercise: Show STV elects k candidates.
Proportionality for Solid Coalitions (PSC)

• Suppose a set $S \subseteq N$ with $|S| \geq \ell \frac{n}{k}$ has the same set $T \subseteq C$ of $|T| = t \geq \ell$ candidates they all rank top, so $T \succ C \setminus T$ for all $i \in S$ (not necessarily ranked in the same order).

• Then $|W \cap T| \geq \ell$.

• STV satisfies this! (no matter how spending is distributed)
STV satisfies PSC

- Let $S \subseteq N$ with $|S| \geq \ell \frac{n}{k}$ agree on $|T| = t \geq \ell$ candidates.
- Suppose PSC failed for S. Then there is a time when
 - $\ell - j$ candidates from T have been elected
 - j further candidates from T need to be elected for PSC
 - all but j candidates from T have been elected or eliminated.
- Group S has only paid at most $\$(\ell - j) \frac{n}{k}$ thus far, so has $\$j \frac{n}{k}$ left over. So at least one of the j candidates has $\$\frac{n}{k}$ support, and this will remain true until all j candidates have been elected.
Hare vs Droop Quota

• The value \(\frac{n}{k}\) is known as the **Hare quota**.
 • Intuition: electorate is split into equal-sized groups, each of which is assigned one seat.

• But we can also use \(\frac{n}{k+1} + \varepsilon\), the **Droop quota**.
 • This works because there are at most \(k\) disjoint subsets of \(N\) of size \(\frac{n}{k+1} + \varepsilon\).
 • Guarantees representation to smaller groups.
 • For \(k = 1\), this says majority needs to be followed.

• *Everything we’ve said works for Droop quota if we are more careful in the proofs.*
 • PAV satisfies Droop EJR, Droop-STV satisfies Droop PSC
Open Problem

Does there exist a ranking-based committee rule that is monotonic and satisfies PSC?
Recap: Approval-based Committee Elections

• Proportional Approval Voting maximizes
 \[\sum_{i} \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{|W \cap A_i|}. \]

• PAV satisfies Extended Justified Representation:
 If \(S \subseteq N \) with \(|S| \geq \ell \frac{n}{k} \) agrees on \(\ell \) candidates
 \(T \subseteq \bigcap_{i \in S} A_i \), then \(|W \cap A_i| \geq \ell \) for some \(i \in S \).

• PAV is NP-complete to compute.

• Sequential PAV fails EJR even for \(\ell = 1 \).

• Question: Can we get something proportional in polynomial time?
Is PAV always right?

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>10</th>
<th>14</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>v₁</td>
<td>3</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v₂</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v₃</td>
<td>1</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$k = 12$

EJR not strong enough to capture this!
Phragmén’s Rule

• Proposed in 1894. Thiele proposed PAV in 1895. Phragmén criticized it in 1899, for a reason similar to

• Phragmén’s proposal:
 • Each voter starts with a bank account with $0.
 • Fill bank accounts at the same rate, until the approvers of some unelected candidate together hold $\frac{n}{k}$.
 • Elect the candidate and reset approvers’ accounts to 0.
 • Stop after k candidates are elected.
Phragmén’s Rule: Example

<table>
<thead>
<tr>
<th></th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
<th>v_5</th>
<th>v_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>9</td>
<td>13</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>8</td>
<td>12</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>7</td>
<td>11</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

$k = 12$

Sveriges Riksbank
Phragmén’s Rule: Example

$k = 12$

<table>
<thead>
<tr>
<th></th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
<th>v_5</th>
<th>v_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

0.00 to 0.50

Sveriges Riksbank
Phragmén’s Rule: Example

$k = 12$

Sveriges Riksbank

<table>
<thead>
<tr>
<th>4</th>
<th>5</th>
<th>6</th>
<th>10</th>
<th>14</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

v_1 v_2 v_3 v_4 v_5 v_6
Phragmén’s Rule: Example

\[k = 12 \]

<table>
<thead>
<tr>
<th>4</th>
<th>5</th>
<th>6</th>
<th>10</th>
<th>14</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\nu_1, \nu_2, \nu_3, \nu_4, \nu_5, \nu_6$
Phragmén’s Rule: Example

\[k = 12 \]

<table>
<thead>
<tr>
<th></th>
<th>(v_1)</th>
<th>(v_2)</th>
<th>(v_3)</th>
<th>(v_4)</th>
<th>(v_5)</th>
<th>(v_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sveriges Riksbank
Phragmén’s Rule: Example

$ k = 12 $
Phragmén’s Rule: Example

<table>
<thead>
<tr>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
<th>v_5</th>
<th>v_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$k = 12$

Sveriges Riksbank

0.50

0.25

0.00
Phragmén’s Rule: Example

0.50

0.25

0.00

$Sveriges Riksbank$

$k = 12$

<table>
<thead>
<tr>
<th>4</th>
<th>5</th>
<th>6</th>
<th>10</th>
<th>14</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

v_1 v_2 v_3 v_4 v_5 v_6
Phragmén’s Rule: Example

\[k = 12 \]

\[
\begin{array}{cccccc}
4 & 5 & 6 & 10 & 14 & 18 \\
3 & 9 & 13 & 17 \\
2 & 8 & 12 & 16 \\
1 & 7 & 11 & 15 \\
\end{array}
\]
Phragmén’s Rule: Proportionality

• Phragmén’s rule violates EJR (largish example with 24 voters, 14 candidates, $k = 12$).

• But it satisfies a weaker version (“PJR”):
 If $S \subseteq N$ with $|S| \geq \ell \frac{n}{k}$ agrees on ℓ candidates $T \subseteq \cap_{i \in S} A_i$, then $|W \cap \bigcup_{i \in S} A_i| \geq \ell$.

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

v_1, v_2, v_3, v_4, v_5
Phragmén’s Rule: PJR

• If $S \subseteq N$ with $|S| \geq \ell \frac{n}{k}$ agrees on ℓ candidates $T \subseteq \bigcap_{i \in S} A_i$, then $|W \cap \bigcup_{i \in S} A_i| \geq \ell$.

• Proof: By the time Phragmén terminates, each voter has received at least $\$1$.

• If it terminates exactly at the $\$1$-point, then all money was spent. So S spent $\$\ell \frac{n}{k}$, and so they bought ℓ candidates from $\bigcup_{i \in S} A_i$.

• If it terminates strictly later, consider $\$1$-point. If then $|W \cap \bigcup_{i \in S} A_i| \leq \ell - 1$, then S now holds at least $\$\frac{n}{k}$, so can purchase a candidate from T.
Proportional Rankings

• Note: you don’t have to stop Phragmén after it has elected k candidates (same for SeqPAV)
• This way, we get a proportional ranking.
• In particular, every prefix satisfies PJR. (Or think of party-list profiles.)
• Applications:
 • Ranking comments by upvotes
 • Displaying proposal variants in LiquidFeedback
• Open Problem: Do there exist EJR rankings?
BCYF Hyde Park Dance Studio Renovation
A renovated dance studio at the Hyde Park Community Center for children of all ages.

Estimated Cost: $286,000

Location: BCYF Hyde Park Community Center, Hyde Park

Bike Lane Installation
After a study, bike lanes will begin to be installed around Charlestown Navy Yard, Bunker Hill housing, and Charlestown High.

Estimated Cost: $200,000

Location: Charlestown

Wicked Free Wifi 2.0
Wicked free Wi-Fi 2.0 provides Wi-Fi at locations with young people.

Estimated Cost: $119,000

Location: Various High Schools and Community Centers, Dorchester, Roxbury, East Boston, Charlestown

Click image for slide show
Education

Bathroom Renovations at M.S./H.S. 223
Renovation of girls' and boys' bathrooms including stalls, lighting, painting, and having walls re-glazed.

Estimated Cost: $150,000
Location: 360 E.145th St. (Bronx - Mott Haven)

- [✓ Selected](#)
- [Remove](#)

Technology Upgrades
Technology upgrades for Park East High School and Central Park East High School.

Estimated Cost: $312,000
Location: 230 E.105th; 1573 Madison Ave. (El Barrio/East Harlem)

- [Select](#)

Air Conditioning at Bronx Schools
Installation of 1 air conditioning system at 345 Brooke Avenue for schools X343, X224 & X334. Installation of 1 air conditioning system at PS 161x.

Estimated Cost: $500,000
Location: 628 Tinton Ave, 345 Brook Ave. (Bronx - Mott Haven & Longwood)

- [✓ Selected](#)
- [Remove](#)

Air Conditioning: P.S.179, P.S.369, P352
Installation of two HVAC units at P.S. 179X, P.S. 369X and P.S. 352X.

Estimated Cost: $500,000
Location: 468 E. 140 St. (Bronx - Mott Haven)
4e arrondissement

Greedy: total utility 3500. Funds 5 projects, avg cost 293 000 tree tree tree tree tree
Optimal: total utility 6878. Funds 14 projects, avg cost 98 928 tree tree

<table>
<thead>
<tr>
<th>Project Name</th>
<th>QPOP</th>
<th>Cost €</th>
<th>Votes</th>
<th>v / k€</th>
<th>Greedy</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un mur végétalisé au croisement des rues Blancs Manteaux et Archiv</td>
<td>30 000</td>
<td>788</td>
<td>26</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Un café solidaire dans le quartier de la tour Saint-Jacques</td>
<td>15 000</td>
<td>706</td>
<td>47</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Une salle d'arts plastiques pour l'école Saint-Merri Renard</td>
<td>300 000</td>
<td>702</td>
<td>2</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Rénovation énergétique exemplaire d'une école du 4e</td>
<td>1 000 000</td>
<td>655</td>
<td>1</td>
<td>✔</td>
<td>–</td>
<td>✔</td>
</tr>
<tr>
<td>Végétalisation de la rue de l'Arsenal</td>
<td>120 000</td>
<td>649</td>
<td>5</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Un collège Charlemagne accessible aux personnes à mobilité réduit</td>
<td>200 000</td>
<td>630</td>
<td>3</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Faire du hall d'accueil de la piscine Saint-Merri un lieu de convivia</td>
<td>20 000</td>
<td>528</td>
<td>26</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Des agrès sportifs place des Vosges</td>
<td>15 000</td>
<td>491</td>
<td>33</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Mise en valeur des pierres de la prison de la Bastille</td>
<td>20 000</td>
<td>473</td>
<td>24</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Un fauteuil roulant électrique pour rompre l'isolement</td>
<td>5 000</td>
<td>453</td>
<td>91</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Création d'un auvent sur une aire de jeux d'un square du 4e</td>
<td>150 000</td>
<td>410</td>
<td>3</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>L'Ascenseur, un tiers-lieu pour l'égalité des chances ouvert sur le</td>
<td>350 000</td>
<td>315</td>
<td>1</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Baliser le passage du chemin de Compostelle dans le 4e</td>
<td>30 000</td>
<td>265</td>
<td>9</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Des arceaux vélos rue de la Reynie</td>
<td>10 000</td>
<td>240</td>
<td>24</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Faciliter l'accès au cellier d'Ourscamp</td>
<td>120 000</td>
<td>228</td>
<td>2</td>
<td>–</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Total € 1 465 000 1 385 000
Participatory Budgeting: Model

- A set C of projects, each with a cost
- A budget limit B
- Outcome: set $W \subseteq C$ with $\sum_{c \in W} \text{cost}(c) \leq B$.
- A set N of n voters
- Each voter $i \in N$ approves a subset $A_i \subseteq C$.
- Mostly, we say that i’s utility is $u_i(W) = |A_i \cap W|$ (this is a dichotomous preference assumption).
- **Unit cost assumption**: $\text{cost}(c) = 1$ for all c.
Three interpretations of “AV”

• Optimize $\sum_{i \in N} u_i(W) = \sum_{c \in W} \text{approval-score}(c)$.

• Greedy: add projects in order of approval score, skipping unaffordable projects.

• Bang-per-buck greedy: add projects in order of approval score divided by cost.
Experiments

Budget = $1000. Cheap = $10. Expensive = $10, $30, $90, $190.
<table>
<thead>
<tr>
<th></th>
<th>optimum</th>
<th>greedy</th>
<th>bang-per-buck</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10</td>
<td>$10</td>
<td>$10</td>
<td>$10</td>
</tr>
<tr>
<td>$30</td>
<td>$30</td>
<td>$90</td>
<td>$90</td>
</tr>
<tr>
<td>$90</td>
<td>$90</td>
<td>$190</td>
<td>$190</td>
</tr>
<tr>
<td>$190</td>
<td>$190</td>
<td>$190</td>
<td>$190</td>
</tr>
</tbody>
</table>
Circleville

- Northside pop. 120k
- Eastside pop. 110k
- Westside pop. 90k
- Southside pop. 80k

$400,000 pop 400,000

Example River

$500,000 $300,000

$150,000 $100,000

$300,000 $300,000

$600,000 $600,000

$1,000,000 $1,000,000
same budget
same population
same district structure
same utilities
same projects
same feasible sets

$90,000
pop 90,000

Onetown

Leftside
pop. 60k

$20k
$20k
$20k

Rightside
pop. 30k

$45k

Twotown

Leftside
pop. 60k

$30k
$30k
$30k

Rightside
pop. 30k

$30k

not proportional!

Rightside deserves $30k

not proportional!

Leftside deserves $60k

{L_1, L_2, L_3} \rightarrow \text{PAV-score 110,000}

{L_1, L_2, R} \rightarrow \text{PAV-score 120,000}

not proportional!

{L_1, L_2, L_3} \rightarrow \text{PAV-score 110,000}

{L_1, L_2, R} \rightarrow \text{PAV-score 120,000}
Phragmén for PB

• Phragmén’s rule can easily be adapted:
 • Fill bank accounts
 • If the approvers of a project have enough money to finance its cost, implement the project
 • Stop when next project doesn’t fit into the budget.

• Picks correct outcome in Onetown and Twotown.

- Onetown
 - Leftside pop. 60k
 - L_1 $20k$
 - L_2 $20k$
 - L_3 $20k$
 - Rightside pop. 30k
 - R $45k$

- Twotown
 - Leftside pop. 60k
 - L_1 $30k$
 - L_2 $30k$
 - L_3 $30k$
 - Rightside pop. 30k
 - R $30k$

• Satisfies “PJR”: If $\frac{|S|}{n} \geq \alpha$ and $\text{cost}(\cap_{i \in S} A_i) \geq \alpha \cdot B$, then $\text{cost}((W \cap \cup_{i \in S} A_i) \cup \{c\}) \geq \alpha \cdot B$ for some $c \in \cap_{i \in S} A_i$.
Rule X for PB

• Split the city budget evenly among residents.
• Put each resident’s share $\frac{B}{n}$ in a bank account.
• Repeatedly, until the budget runs out:
 • identify a project whose supporters have enough money left to afford it
 • charge the cost to supporters
Rule X for PB

- Split the city budget evenly among residents.
- Put each resident’s share $\frac{B}{n}$ in a bank account.
- Repeatedly, until the budget runs out:
 - always divide the cost of a project among supporters as evenly as possible
 - find an affordable project with the lowest max payment.
Rule X for PB

• Split the city budget evenly among residents.
• Put each resident’s share \(\frac{B}{n} \) in a bank account.
• Repeatedly, until the budget runs out:
 • always divide the cost of a project among supporters as evenly as possible
 • find an affordable project with the lowest max payment.

![Graph showing two projects with cost $16 each, split among voters.](image)
Rule X for PB

• Split the city budget evenly among residents.
• Put each resident’s share \(\frac{B}{n} \) in a bank account.
• Repeatedly, until the budget runs out:
 • always divide the cost of a project among supporters as evenly as possible
 • find an affordable project with the lowest max payment.

• Rule X satisfies EJR!
• Let \(\frac{|S|}{n} \geq \alpha \), and take \(T \subseteq \bigcap_{i \in S} A_i \) with \(\text{cost}(T) \leq \alpha \cdot B \).
 • Then \(u_i(W) \geq u_i(T) \) for some \(i \in N \) (i.e. \(|W \cap A_i| \geq |T| \)).
Additive Valuations

Motivating Example:
2019, Paris, 16th arrondissement
€560k: refurbish sports facility — 775 votes
€3k: materials for classroom project — 670 votes
— 1.15x as popular, 186x the cost!

• Utility of outcome: \(u_i(W) = \sum_{c \in W} v_i(c) \).
• Phragmén: no obvious way of extending to additive utilities.
• Rule X: can extend using following idea: a voter’s payment for a candidate should be proportional to the voter’s utility for the candidate.
• Core may be empty!
Core for Additive Valuations

• A group $S \subseteq N$ with $\frac{|S|}{n} \geq \alpha$ blocks W if there is $T \subseteq C$ with $|T| \leq \alpha \cdot B$ such that $u_i(T) > u_i(W)$ for all $i \in S$.

<table>
<thead>
<tr>
<th></th>
<th>Voter 1</th>
<th>Voter 2</th>
<th>Voter 3</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_i(a)$</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>$2</td>
</tr>
<tr>
<td>$u_i(b)$</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>$2</td>
</tr>
<tr>
<td>$u_i(c)$</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>$2</td>
</tr>
</tbody>
</table>

Budget B $\$3$

• An approximation exists if we put $|T| \leq \frac{\alpha}{32} \cdot B$. The factor of 32 might be improvable to 2, but not further.

• Existence open for approval utilities.
Bibliography

