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Abstract

We study the problem of fair sequential decision making given
voter preferences. In each round, a decision rule must choose
a decision from a set of alternatives where each voter reports
which of these alternatives they approve. Instead of going with
the most popular choice in each round, we aim for proportional
representation, using axioms inspired by the multi-winner
voting literature. The axioms require that every group of α% of
the voters, if it agrees in every round (i.e., approves a common
alternative), then those voters must approve at least α% of
the decisions. A stronger version of the axioms requires that
every group of α% of the voters that agrees in a β fraction of
rounds must approve β · α% of the decisions. We show that
three attractive voting rules satisfy axioms of this style. One of
them (Sequential Phragmén) makes its decisions online, and
the other two satisfy strengthened versions of the axioms but
make decisions semi-online (Method of Equal Shares) or fully
offline (Proportional Approval Voting). We present empirical
results for these rules based on synthetic data and U.S. political
elections. We also run experiments using the moral machine
dataset about ethical dilemmas. We train preference models
on user responses from different countries and let the models
cast votes. We find that aggregating these votes using our rules
leads to a more equal utility distribution across demographics
than making decisions using a single global preference model.

1 Introduction
We consider the problem of making a sequence of indepen-
dent decisions via voting. In each round, we can choose one
alternative from a set of several alternatives, based on voters
who tell us which alternatives they support (or approve). The
set of voters stays the same across rounds, though the set of
alternatives may change. The popular way of making such
decisions is to take the alternative with the most supporters in
each round. A problem with this method is that non-majority
groups of voters may have very little influence on the out-
comes. For example, if there is a fixed group of 51% of the
voters who all report the same opinion in every round, then
100% of the decisions will be taken in accordance with the
wishes of that group, with the other 49% of voters ignored
or at most acting as tie-breakers. In many contexts, this is
undesirable due to fairness concerns.
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Following recent work that studies this model under the
name “perpetual voting” (Lackner 2020), we define formal
properties of voting rules that capture the intuition that a
group of α% of the voters should be able to control the
decisions in α% of the rounds. Inspired from work in multi-
winner approval voting (Lackner and Skowron 2023), we then
define a number of voting rules that satisfy these properties.
We believe that these rules have promising applications in a
variety of domains. Here are some examples:

• Hiring decisions: Consider a department that hires new
faculty each year, with existing faculty voting over the
applicants. The department wishes to hire people repre-
senting its spectrum of research interests. For example,
if 20% of the department works on one topic and votes
for candidate on that topic, then at least 1 such candidate
should be hired every 5 years.

• Virtual democracy: In cases where a group of people need
to make an extremely large number of decisions, we may
wish to automate this process. An approach known as
virtual democracy does this by initially learning voters’
preferences over a space of potential alternatives (spec-
ified by feature vectors) for example based on pairwise
comparisons. Then, each decision is made by letting the
models vote on the decision maker’s behalf by predict-
ing their preferences. This approach has led to proof-of-
concept systems that automate moral decisions faced by
autonomous vehicles (Noothigattu et al. 2018), kidney ex-
changes (Freedman et al. 2020), collective decision mak-
ing directly from natural language preferences (Mohsin
et al. 2021) and allocation of food donations (Lee et al.
2019). The approach behind these systems has recently
been criticized as overweighting the opinions of majorities
(Feffer, Heidari, and Lipton 2023). We show preliminary
evidence in our experiments that using proportional voting
methods could avoid this issue.

• Policy decisions of coalition governments: In many coun-
tries, the government is formed by coalitions of several
parties with different strengths (for example, in Germany
2021–25 it consists of 3 parties who received 26%, 15%,
and 12% of the vote). A coalition needs to agree on a pro-
gram, consisting of decisions on many issues. Our meth-
ods could help to design a program where each party’s
preferences gets a fair representation in the outcome.



Voting Rule PJR Strong PJR EJR Strong EJR

Sequential Phragmén (Online) + +

Method of Equal Shares (Semi-online)
PAV (Offline)

Table 1: Our results. For each setting (online, semi-online (where the rule only knows the total number of rounds in advance),
offline (where the rule knows all the preferences in advance)), we list the best known rule with respect to proportionality axioms.
+ = knowing an online rule satisfying (Strong) EJR would resolve a major open problem in the theory of multi-winner voting.

Our Results We build on the work of Bulteau et al. (2021)
who defined axioms that guarantee group representation,
which we call PJR (Proportional Justified Representation)
and Strong PJR. These axioms do not require the groups to
be pre-defined. Instead, the guarantee applies to all subsets
of voters who support a common alternative in every round.
“Strong” axioms also apply to groups that only support a com-
mon alternative in some of the rounds. Bulteau et al. (2021)
conjectured that no polynomial-time algorithm can find a
PJR outcome. We show that the picture is more positive: an
attractive polynomial-time voting rule building on ideas of
Phragmén (1894) satisfies Strong PJR (Section 4.1). This rule
is fully online, making decisions round by round.

We then define axioms called EJR (Extended Justified Rep-
resentation), which provides better group representation guar-
antees than PJR, and analogously Strong EJR. We show that
the existence of a fully online rule that satisfies EJR would
positively resolve a major open problem in multi-winner ap-
proval voting (Lackner and Skowron 2023). Still, we can
define a simple voting rule (a variant of the “Method of Equal
Shares”) that satisfies EJR and that is “semi-online”: it needs
to know how many rounds there will be in total, but it can be
given preferences in an online fashion (Section 4.2). However,
it does not satisfy Strong PJR or Strong EJR. This suggests
the question whether we can satisfy Strong EJR in the of-
fline setting, where all preferences are available in advance.
In Section 4.3 we show that Proportional Approval Voting
(PAV), an offline rule that maximizes a carefully chosen ob-
jective function proposed by Thiele (1895), does satisfy all
our axioms, including Strong EJR. While the PAV optimiza-
tion problem is NP-hard, we prove these results also hold
for a polynomial-time local search variant of PAV. Finally, in
Section 5 we show that further strengthenings of the Strong
PJR/EJR axioms are not satisfiable, and that on inputs where
a solution exists, online rules still must fail them.

We close with several experimental results on synthetic
(Section 6.1) and real datasets (Section 6.2) comparing our
rules to existing rules from the literature (which do not satisfy
our axioms). In Section 6.3, we study the virtual democracy
application based on the moral machine dataset (Awad et al.
2018). We learn separate preference models that predict the
respondents judgement for each country and use each coun-
try’s model as a ‘voter’. We then sample new decision situa-
tions and query the models for their top choices among the
alternatives in each situation, aggregating the responses using
our voting rules to produce a decision sequence. We compare
the decisions produced with an alternative approach where
the top choices of a single universal model trained on equal
number of responses from all countries are used. We find that

when voters do not already have very similar preferences on
the issues, the aggregation approach leads to a much fairer
outcomes than the decisions made by the combined model.

Full Version In this conference paper, we have omitted
some proofs and additional details due to space constraints.
A full version is available (Chandak, Goel, and Peters 2023).

2 Related Work
Perpetual Voting Our work is closely related to perpetual
voting (Lackner 2020) which studies online rules, while we
also consider offline rules. Lackner (2020) focused on indi-
vidual fairness properties, for example requiring that each
voter approves at least 1 decision in every time interval of
some bounded length. We are interested in guarantees for
groups of voters who agree with each other, such that larger
groups receive stronger guarantees. Such guarantees have
been considered by Lackner and Maly (2023) and Bulteau
et al. (2021); we compare them to ours in Section 3.

Public Decision Making Conitzer, Freeman, and Shah
(2017) study “public decision making” which is an offline
model of several decisions, where a voter’s total utility is the
sum of the utilities obtained in each round. We study the spe-
cial case where the utility values in each round are restricted
to 0 and 1. Conitzer, Freeman, and Shah (2017) focus on
fairness notions for individuals (not groups) derived from fair
division. Freeman, Kahng, and Pennock (2020), Skowron and
Górecki (2022), and Brill et al. (2023b) consider the special
case where there are exactly two alternatives (“yes/no”) in
each round and utilities are 0/1, which is a special case of our
setting where fairness properties are easier to obtain.

Multi-winner Approval Voting For the task of selecting
a committee of k out of m candidates given approval votes,
proportionality has been intensely studied (see the book by
Lackner and Skowron 2023). It can be considered a special
case of our offline setting where voter preferences remain the
same across all rounds but a different alternative (candidate)
needs to be elected in each round. Many rules and axioms we
consider are analogues of proposals in multi-winner voting.

Combinatorial Voting A classic literature on voting in
combinatorial domains (Lang and Xia 2016) studies the prob-
lem of making decisions on several issues. The main focus is
on the representation of complex preferences, and the com-
putational problem of finding good outcomes given such
preferences, often in the sense of maximizing utilitarian or
egalitarian welfare (Amanatidis et al. 2015). Some of this
work considers (conditional) approval preferences (Barrot
and Lang 2016; Barrot, Lang, and Yokoo 2017).
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Figure 1: Implications between axioms.

3 Problem Formulation
3.1 Model
Let N = {1, 2, . . . , n} be the set of voters, with |N | = n.
There is a set R = {1, 2, . . . , T} of T rounds, where T is
the time horizon. In each round j ∈ R, we are given a set of
alternatives Cj . Each voter i ∈ N approves some (usually
non-empty) subset Ai

j of Cj . Thus, we have a sequence of
T decision rounds together with a sequence C = (Cj)j∈R

of alternative sets and a collection A = (Ai
j)i∈N,j∈R of

approval sets. We let (N,R,C,A) denote a decision instance.
A decision sequence D = (d1, . . . , dT ) ∈ C1 × · · · × CT

specifies a single decision dj ∈ Cj for each round j ∈ R.
For a voter i ∈ N , we write U i

D = |{j ∈ R : dj ∈ Ai
j}| for

the number of decisions in D that i approves; we treat U i
D as

i’s utility. A decision rule f takes as input a decision instance
and returns a decisions sequence D = f(N,R,C,A). We
call a decision rule semi-online if its decision in round j ∈ R
only depends on the information up to round j, i.e., on N , R,
C1, . . . , Cj and Ai

1, . . . , A
i
j . A rule is online if in addition,

the decisions are independent of the time horizon T .

3.2 Axioms
We now define several properties (or axioms) of decision se-
quences that formalize the idea of proportional representation.
These come in different strengths and Figure 1 shows impli-
cation relationships between them. We will focus on the four
strong properties of (Strong) EJR and (Strong) PJR, shown
in bold. For completeness, the figure also mentions two prop-
erties introduced by Lackner and Maly (2023) (perpetual
priceability and lower quota compliance). We discuss these
properties, as well as Pareto-efficiency, in the full version.

Our first two axioms were introduced by Bulteau et al.
(2021).1 A group S ⊆ N of voters agrees in round j ∈ R
if there is an alternative c ∈ Cj that all voters in S approve,
so

⋂
i∈S Ai

j ̸= ∅. PJR (Proportional Justified Representation,
first defined for multi-winner voting by Sánchez-Fernández
et al. 2017) requires that a group of an α fraction of the voters,
if it agrees in every round, must be “happy” in at least ⌊αT ⌋
rounds, meaning that at least one member of S approves the
decision (but this member of S can differ across rounds).
Definition 3.1 (PJR). A decision sequence D satisfies PJR if
for every ℓ ∈ N and every group of voters S ⊆ N that agrees
in every round and has size |S| ⩾ ℓ · n

T , there are at least ℓ

1 We use different names for these axioms. Bulteau et al. (2021)
say “all periods intersection PJR” for what we just call PJR, and say
“some periods intersection PJR” for what we call Strong PJR.

Round 1 & 2 3 & 4 5 & 6 7 & 8

Voter 1 { a , b } { a , b } { a , b } { a , b }
Voter 2 { a , c } { a , c } { a , c } { a , c }
Voter 3 { d } { d } { d } { e }
Voter 4 { d } { d } { d } { f }

Figure 2: Example illustrating our axioms.

rounds j ∈ R in which the decision dj of D is approved by
at least one voter in S (i.e., dj ∈

⋃
i∈S Ai

j).
PJR only provides guarantees for groups that agree in all

rounds. Strong PJR also gives guarantees for groups that
agree only in some of the rounds, though the groups need
to be larger: a group that agrees in k rounds deserves to be
happy with ℓ decisions if the size of the group is at least ℓ · n

k
(as compared to ℓ · n

T for groups that agree in all rounds).
Note that Strong PJR implies PJR (take k = T ).
Definition 3.2 (Strong PJR). A decision sequence D satisfies
Strong PJR if for every ℓ ∈ N and every group of voters
S ⊆ N that agrees in k rounds and has size |S| ⩾ ℓ · nk , there
are at least ℓ rounds j ∈ R in which the decision dj of D is
approved by at least one voter in S (i.e., dj ∈

⋃
i∈S Ai

j).
An equivalent way of stating this axiom is that an α frac-

tion of the voters who agree in a β fraction of the rounds need
to be “happy” with at least an ⌊α ·β⌋ fraction of the decisions.
For example, consider a group S ⊆ N of voters with fixed
size ℓ · n

T , and let us ask what Strong PJR guarantees for this
group. If S agrees in all rounds, then it says that S should
be happy with ℓ decisions. If S agrees in T/2 rounds, then it
says that S should be happy with ⌊ ℓ

2⌋ decisions.
To illustrate the axioms, consider the instance shown in

Figure 2, with T = 8 rounds and 4 voters. The group S =
{1, 2} agrees in all rounds (always approving a ). Thus, to
satisfy PJR, in at least ℓ = 4 rounds the outcome needs to
be either a , b , or c (because |S| ⩾ ℓ · 4

8 ). The group
S′ = {3, 4} agrees in the first 6 rounds (approving d ), so
with ℓ′ = 3, because |S′| ⩾ ℓ′ · 4

6 , Strong PJR requires that
in at least 3 rounds, the outcome is either d , e , or f .

A weakness of PJR and Strong PJR is in how they de-
fine S being “happy” with a decision (“at least one member
of S approves the decision”). This definition can be satis-
fied by a decision sequence that gives each member of S a
utility that is much lower than ℓ (Peters and Skowron 2020,
Sec. 4.2). In the example of Figure 2, the decision sequence
( b , b , c , c , d , d , e , f ) satisfies Strong PJR, but the
first two voters each only approve the decision in 2 rounds,
instead of in 4 rounds. Following Aziz et al. (2017), we can
fix this by defining the axioms EJR (Extended Justified Rep-
resentation) and Strong EJR which require that at least one
member i of S must approve at least ℓ of the decisions, i.e.,
must have utility U i

D ⩾ ℓ. In the example, the decision se-
quence ( d , d , d , d , a , a , a , a ) satisfies Strong EJR.
Definition 3.3 (EJR). A decision sequence D satisfies EJR if
for every ℓ ∈ N and every group of voters S ⊆ N that agrees
in all rounds and that has size |S| ⩾ ℓ n

T , there is a voter
i ∈ S who approves at least ℓ decisions in D, i.e., U i

D ⩾ ℓ.
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Figure 3: Load distribution

Definition 3.4 (Strong EJR). A decision sequence D satisfies
Strong EJR if for every ℓ ∈ N and every group S ⊆ N that
agrees in k rounds and has size |S| ⩾ ℓ · n

k , there is a voter
i ∈ S who approves at least ℓ decisions in D, i.e., U i

D ⩾ ℓ.

A decision rule f satisfies an axioms if its output satisfies it
for all possible inputs. Note that if f is also online, this means
that the proportionality guarantee thereby not only holds for
the entire decision sequence, but also for every prefix of it.

3.3 Methods
We now define three decision rules that are natural analogues
of rules that were first proposed for multi-winner elections.

Sequential Phragmén Phragmén (1894) proposed an
approval-based voting method for electing members of the
Swedish parliament. Lackner and Maly (2023) adapted this
rule to the context of perpetual voting, calling their adapta-
tion “perpetual Phragmén”. We follow their definition. The
rule makes decisions round by round. Each decision provides
a value (or load) of 1, which is distributed to voters who
approve the decision. In each round, the rule chooses an alter-
native such that no voter ends up with too much load, thereby
prioritizing voters who do not yet agree with many prior
decisions. Formally, each voter i starts with load xi = 0.
Sequential Phragmén chooses the alternative for which it
can distribute a load of 1 in a way that minimizes the maxi-
mum total load assigned to a voter: at each round j ∈ R, we
compute the following value for each alternative c ∈ Cj :

sc = min
S⊆{i∈N :c∈Ai

j}

∑
i∈S xi + 1

|S|
.

This value can be understood using a “water filling” anal-
ogy, as shown in Figure 3, where we consider an alternative
c approved by 7 voters, and show their current loads as bars.
We then fill 1 unit of water on top of the approving voters’
loads. Note that the water never falls on top of the loads of
voters 5, 6, and 7 because their load is already quite high; in
other words, this process has only assigned load to the set
S = {1, 2, 3, 4}. Then sc is the “water line”, which is the
load of each voter in S after the load of c has been assigned.2

2In the multi-winner setting, we can fix S in the definition of sc
to be the set of all voters approving c, because it cannot happen that
an approver of c already has more load than sc, for in that case the
rule would have chosen c in an earlier iteration (Brill et al. 2023a,
Lemma 4.5). This is not true in our setting because c may not have
existed in a prior round. Other definitions of Phragmén’s method
based on virtual bank accounts (Janson 2016; Peters and Skowron
2020) do not easily adapt to our setting due to a similar problem.

The decision for round j ∈ R is the alternative c that mini-
mizes sc, breaking ties arbitrarily. After making the decision,
we update loads by setting xi = sc for each voter i ∈ S
(where S is the coalition attaining the minimum in the defini-
tion of sc) and leave xi unchanged for voters not in S. Note
that the load of a voter will never decrease.

Clearly, Sequential Phragmén is an online rule. Lackner
and Maly (2023) show that it can be computed in polynomial
time, and provide a detailed example.

Method of Equal Shares (MES) MES is a recently in-
troduced rule for multi-winner voting (Peters and Skowron
2020) and also used in practice for participatory budgeting
(Peters, Pierczyński, and Skowron 2021). It can be adapted to
our setting in a semi-online fashion: the rule needs to know
the total number of rounds T in advance, but does not need to
know voter preferences of future rounds. Each decision costs
p = n

T units, which must be paid by voters that approve the
chosen alternative. MES works by subtracting this amount
from an initial budget bi = 1 assigned to each voter i.

For ρ ⩾ 0, an alternative c ∈ Cj is called ρ-affordable if∑
i∈N :c∈Ai

j
min(bi, ρ) ⩾ p,

so approvers of c can pay p with no one paying more than
ρ. In each round, the alternative dj ∈ Cj that is ρ-affordable
for minimum ρ is chosen, breaking ties arbitrarily. Then for
each voter i approving dj , the remaining budget bi of i is set
to max(0, bi − ρ).

If in some round, no alternative is affordable for any ρ,
MES terminates prematurely. Decisions for the remaining
rounds can be made arbitrarily (as far as our axioms are
concerned), but in practice are done using an appropriate
completion rule such as Sequential Phragmén. In our experi-
ments, we followed the “ε-completion” strategy introduced
by Peters, Pierczyński, and Skowron (2021, Sec. 3.4) which
approximates the concept of choosing the lowest affordable
alternative, retaining the core idea of MES.

Proportional Approval Voting (PAV) PAV (based on a
rule of Thiele 1895) is an offline rule that selects the decision
sequence D ∈ C1 × · · · × CT that maximizes

PAV-score(D) =
∑
i∈N

1 +
1

2
+

1

3
+ · · ·+ 1

U i
D

,

where we recall that U i
D is the number of rounds in which

voter i approves the decision of D. This harmonic objective
function is the unique additive objective that leads to a propor-
tional rule (Aziz et al. 2017). Finding the optimum decision
sequence for PAV is NP-hard (Brill et al. 2022, Thm. 5.1),
just like in the multi-winner setting (Aziz et al. 2015), but we
will show that a polynomial-time local search variant (Aziz
et al. 2018) satisfies the same axioms as PAV.3

3One could use a sequential version of PAV to get an online
rule, which Page, Shapiro, and Talmon (2020) conjectured to satisfy
at least a weak version of PJR. However, a counterexample from
multiwinner voting (Sánchez-Fernández et al. 2017, Table 2) can be
adapted to show that Sequential PAV fails PJR in our model (repeat
the profile from their paper for k = 6 rounds).



4 Satisfying the Axioms
In this section, we establish which of our three rules satisfy
which of our four axioms (see Table 1). Bulteau et al. (2021)
conjectured that no polynomial-time rule achieves PJR (they
gave existence proofs which were based on exponential-time
algorithms). Our results show that, in fact, PJR as well as
the stronger axioms can be satisfied in polynomial time, by
attractive rules, some of which even work online.

4.1 Online: Sequential Phragmén
We begin by analyzing the sequential Phragmén rule.
Theorem 4.1. Sequential Phragmén satisfies Strong PJR.

Proof. For a contradiction, suppose S ⊆ N witnesses a viola-
tion of Strong PJR: it agrees in rounds R∗ = {j1, . . . , jk} ⊆
R and has size |S| ⩾ ℓ · n

k , but there are fewer than ℓ rounds
in which at least one member of S approves the decision.

First, we claim that if dj ∈ Cj is the alternative chosen in
some round j ∈ R∗, then sdj

⩽ ℓ
|S| . Note that the total load∑

i∈S xi assigned to members of S is at most ℓ− 1 because
each decision incurs a load of 1. Since j ∈ R∗, there is an
alternative c′ ∈ Cj that everyone in S approves. Hence,

sc′ ⩽
1 +

∑
i∈S xi

|S|
⩽

1 + (ℓ− 1)

|S|
=

ℓ

|S|
,

where the first inequality follows from the definition of sc′
as a minimum. Since Sequential Phragmén selected dj , we
have sdj

⩽ sc′ , showing our claim.
Call a round j a bad round if j ∈ R∗ and the decision dj

is not approved by any voter in S. Fix some voter i ∈ N \ S,
and suppose i gets assigned some load during at least one bad
round. Consider the point just after the last bad round j where
i is assigned some load. At this point we must have xi ⩽ ℓ

|S|
since otherwise sdj > ℓ

|S| , contradicting our claim. Thus, at
most ℓ

|S| load was assigned to i during all bad rounds together.
Clearly, this last claim is also true for voters i ∈ N \ S who
do not get assigned any load during any bad round.

In a bad round, load is only assigned to voters outside S
(since the round is bad). Thus, by summing over all i ∈ N \S,
we see that the total load assigned in bad rounds is at most

|N \ S| · ℓ
|S| =

|N |
|S| · ℓ−

|S|
|S| · ℓ ⩽

k
ℓ ℓ− ℓ = k − ℓ.

But there are at least k−(ℓ−1) bad rounds, so a total load of at
least k−ℓ+1 is distributed across them, a contradiction.

Sequential Phragmén fails EJR in multi-winner voting
(Brill et al. 2023a), and it also does so in our setting.
Theorem 4.2. Sequential Phragmén fails EJR.

4.2 Semi-online: Method of Equal Shares (MES)
We do not know an online rule that satisfies EJR. In fact, in
the full version of the paper, we give a reduction showing
that such a rule could be converted to a multi-winner voting
rule satisfying EJR and the axiom of committee monotonicity,
the existence of which is a major open problem (Lackner and
Skowron 2023; Sánchez-Fernández and Fisteus 2019).

Can we evade this difficulty with some foresight, by re-
laxing the online requirement? Knowing the time horizon T

is a common assumption found in online learning settings
like multi-armed bandits (Barman et al. 2023). Indeed, if we
know the total number of rounds T , we can use MES (which
is online except that it uses T to determine the price p = n/T
of deciding a round). We show that it satisfies EJR.

Theorem 4.3. MES satisfies EJR.

Does MES provide good guarantees for coalitions that
do not agree on all rounds? Unfortunately not. We show
that MES fails Strong PJR and Strong EJR. This is perhaps
surprising since, in other settings, MES usually satisfies at
least as many proportionality axioms as Sequential Phragmén.
The reason for its failure here is that coalitions may agree only
in early rounds where MES greedily maximizes efficiency,
and then MES cannot satisfy the fairness requirements in
subsequent rounds where there may not be enough agreement
between voters to support the purchase of any alternative.

Theorem 4.4. MES fails Strong PJR.

4.3 Offline: Proportional Approval Voting (PAV)
In some settings, offline voting (where alternatives and ap-
proval sets for all rounds are known in advance) is possible,
e.g., for voting in combinatorial domains with independent
issues. Studying the offline setting can also clarify which
axioms are plausible aims for online rules. It turns out that if
we make decisions fully offline, there is a rule that satisfies
all four of our axioms: PAV, as well as a polynomial-time
local search variant of PAV. The proof uses a swapping ar-
gument: if the output violates Strong EJR, then in at least 1
round, one can change the decision and thereby increase the
PAV objective function. This technique is also used in multi-
winner voting (Aziz et al. 2017). Our theorem was recently
generalized by Masařík, Pierczyński, and Skowron (2023).

Theorem 4.5. PAV and Local-Search PAV satisfy Strong EJR.

5 Impossibility of Stronger Guarantees
In this section, we show that if the Strong PJR axiom is further
strengthened by reducing the requirement on the coalition
size by ε, there are instances where no decision sequence
satisfies the strengthening.

Theorem 5.1. Let ε > 0. Then there exists an instance where
no decision sequence D satisfies “ε-Strong PJR”, defined
to require that for every ℓ ∈ N and every group of voters
S ⊆ N that agrees in k rounds and has size |S| ⩾ (ℓ−ε) · nk ,
there are at least ℓ rounds j ∈ R in which the decision dj of
D is approved by at least one voter in S (i.e., dj ∈

⋃
i∈S Ai

j).

In the proof, we construct a counterexample where in the first
k rounds, there are very many coalitions that agree (but can-
not all be satisfied simultaneously), while in the remaining
rounds, there is no agreement at all (which makes it impossi-
ble to satisfy all the justified demands from earlier rounds).
This is a worst case result, and we could hope for rules that
satisfy ε-Strong PJR on inputs where it is possible. However,
we show that no (semi-)online rule can do this.

Theorem 5.2. Let ε > 0. No semi-online decision rule re-
turns an ε-Strong PJR decision sequence whenever one exists.



6 Experiments
To understand the performance of our methods empirically,
we run our methods on both synthetic and real-world datasets.
In addition to our proposed rules, we also consider two
rules proposed by Lackner (2020): Perpetual Quota (aims
at granting each voter a satisfaction as close as possible to
their “quota”) and Perpetual Consensus (similar to Sequen-
tial Phragmén but strictly enforces an equal distribution of
the load incurred).4 We chose those rules as they performed
well in Lackner’s (2020) experiments. Further, we consider
two baselines: Approval Voting (chooses the alternative with
highest approval score in each round) and Round Robin (in
each round j, voter j mod T chooses an alternative).

We evaluate our rules on several metrics of voter utility
to complement our theoretical guarantees. For comparability
of results, we normalize utility and define a single voter i’s
utility as the fraction of rounds in which the voter approves
the decision: U i

D/T . Based on this, we report three metrics:

• Average Utility of the voters (utilitarian social welfare).
• Utility of the 25th Percentile: We sort the vector of util-

ities and report its 25th percentile. This is inspired by
egalitarian social welfare, which we did not use in our
experiments because the minimum utility was often zero.

• Gini Coefficient: This metric quantifies the level of in-
equality in the voter utilities. A lower value corresponds
to a more equal utility distribution (with 0 being obtained
in case every voter has the same utility). Formally, the
Gini coefficient of a decision sequence D is as follows:

gini(D) = 1∑
i∈N Ui

D

∑
i∈N

∑
j∈N

1
2n

∣∣U i
D −Dj

D

∣∣.
6.1 Synthetic Data
For analysis based on synthetic data, we follow a similar
setup to the one used by Lackner (2020) which is based on
the popular approach of sampling both voters and alternatives
as points in a two-dimensional Euclidean space (Elkind et al.
2017). We use n = 20 voters who are split into a group of
6 and a group of 14 voters. The locations of voters in the
first and second group are sampled from N (−0.5,−0.5) and
N (0.5, 0.5) respectively, with standard deviation σ = 0.2.
While the voter locations stay fixed across rounds, a fresh set
of alternatives is sampled in each round, uniformly at random
from the square [−1,−1]× [1, 1].

We use T = 20 rounds with 20 alternatives per round.
Each voter approves all alternatives whose Euclidean distance
is at most 1.5 times the distance of the closest alternative.
On average, voters approved their top 2 alternatives. The
experiment was repeated for 1000 trials. We report results for
other parameters and voter distributions in the full version.

Across the various distributions, we find some prominent
patterns for each metric. In terms of average satisfaction, Ap-
proval Voting (AV) outperforms other rules as it maximizes
this value. Round Robin performs the worst. Among the pro-
portional rules, we found the following rank order in most
cases for average satisfaction: PAV > Sequential Phragmén

4These rules aim for proportionality, but do not satisfy any of
our axioms (Lackner and Maly 2023).
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Figure 4: Performance of the rules on synthetic instances. The
length of the bar shows the median across the 1000 trials, the
error bars give the 25th and 75th percentile, and the numeric
text gives the mean.
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Figure 5: Performance of the rules on the 2022 General Elec-
tions in Shasta County, California. The length of the bar
shows the median across all voting districts, the error bars
give the 25th and 75th percentile, and the text gives the mean.

> MES > Perpetual Quota > Perpetual Consensus. Regard-
ing fairness metric (Gini coefficient), we observed that AV
consistently featured a high Gini coefficient and often re-
sulted in almost no decisions being approved by the bottom
25% of the voters. Round Robin performed better than AV
and competitive to the proportional rules, which consistently
produced outcomes with a more equal distribution of utility.

6.2 Political Data
In addition to synthetic data, we evaluated the rules on data
from U.S. political general elections which we collected
(available at https://osf.io/t6p7s/). In these elections, voters
elect candidates to various federal, state, and local political of-
fices and express opinions on yes/no ballot initiatives. Using
public anonymized Cast Vote Records (CVR) data we can see,
for each voter, their votes on all these issues simultaneously.

We collected instances from 16 counties in California and
Colorado from 2020 and 2022 (for which data was available).
The results for one county are shown in Figure 5, where
Approval Voting (AV), the method that is actually used to
determine winners, gives a high Gini coefficient compared to
all the other rules (see the full version for more details).

6.3 Learning Preferences from the Moral Machine
Virtual democracy (Noothigattu et al. 2018; Freedman et al.
2020; Mohsin et al. 2021) is a proposal to automate decision
making by learning models of preferences of individual users
and using predicted preferences as inputs to a voting rule.
This can be particularly useful when preference elicitation
costs are high, or decisions need to be made in real time.
A common approach (Noothigattu et al. 2018; Wang et al.
2019) for virtual democracy is to average the learnt model
parameters across voters to obtain a single model. Feffer,



Heidari, and Lipton (2023) have shown that such averaging
may lead to non-proportional outcomes that underweight
minority preferences. We hope to alleviate these fairness
concerns by aggregating model outputs using our voting rules.
Further, we wish to compare our strategy of proportional
aggregation with the traditional Machine Learning approach
of learning a single preference model on a combined dataset.

Following the work of Noothigattu et al. (2018), to empiri-
cally test our work on a dataset that has structured features
which allow preference learning, we consider virtual democ-
racy applied to the moral machine (Awad et al. 2018). This
experiment is a modern take on ethical “trolley problems” and
involves decisions that a self-driving car might face. Users
were asked to express preferences in instances where a self-
driving car must either swerve or stay in the lane, with both
choices leading to injuring a different group of people. These
choices can be seen as alternatives that can be described by a
structured feature vector. Several million pairwise compari-
son responses are available in a public dataset.

Noothigattu et al. (2018) learn a model predicting the
preferences of each respondent. However, there are only 13
pairwise comparisons per respondent, meaning that such
individual models have low accuracy. Instead, we partition
the respondents by their country. Kim et al. (2018) show that
learning a single model for respondents from a country leads
to reasonable accuracy (perhaps due to cultural similarities).

We limit ourselves to 197 countries for which the dataset
contains over 100 samples. To learn a preference model for
each country, we use the Plackett-Luce (PL) model (Plackett
1975; Duncan 1959) which is a random utility model appro-
priate for social choice preference learning (Azari Soufiani,
Parkes, and Xia 2012). As a baseline, we train a combined
model on respondents from all countries, using Additionally,
we consider Round Robin which in each round selects a spe-
cific country model as the “dictator” whose preferred choice
becomes the decision for that round.

We produce 100 decision rounds together with 100 alter-
natives for each round. We specifically generate alternatives
that feature high disagreement (since sampling an alternative
uniformly at random typically leads to very similar prefer-
ences). We let each country approve the (predicted) best of
these alternatives. We then use our voting rules to compute
decision outcomes using the country models as voters. To
compare the voting rules to the performance of the combined
model, we pick the alternative assigned the highest utility by
the combined model as its decision for the round.

We present our results in Figure 6 (with results using other
parameter settings shown in the full version). We find it strik-
ing how Approval Voting (AV) and the Combined Model
attain almost identical values on each metric, and how these
are quite different from the values obtained by the propor-
tional rules. Indeed, in the experiment, AV and the Combined
Model choose the same decision in 84% of rounds, but both
agree with the 5 proportional rules less frequently. Notably,
the 5 proportional rules all feature a much smaller Gini co-
efficient and a higher satisfaction at the 25th percentile. The
similar performance between AV and the Combined Model
suggests that the Combined Model exhibits a bias towards
plurality and majority opinions. This contradicts a possible
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Figure 6: Performance of the different rules on the Moral
Machine Dataset, based on high-disagreement alternatives,
for T = 100 rounds with each round having 100 alternatives
and each voter approving their top 1 alternative.

hope one might have had that, because the Combined Model
is trained based on an equal number of samples from each
country, it will “merge” their views roughly proportionally.

We see the results from this small experiment as a potential
starting point for a larger research program that studies how
a global preference model trained on preferences of diverse
agents makes decisions compared to aggregation rules that
explicitly take into account each individual’s preferences.
Note that the results do not indicate such models can be used
in applications, or to automate moral reasoning, which would
require more rigorous testing and ethical considerations.

7 Discussion and Future Work
Extensions Our model can be extended to make it com-
patible with more real-world applications. Examples include
allowing weighting issues by importance (Page, Shapiro, and
Talmon 2020), to allow for dependencies between issues
(Brill et al. 2023b), or to allow voters to specify utilities or
to rank alternatives instead of approvals (Peters, Pierczyński,
and Skowron 2021). The latter may be important as some
issues may be more critical to certain minority groups.

Open Problems We leave some theoretical open problems
for future work, notably whether an online rule can satisfy
EJR or Strong EJR – a negative result may be easier to find
in this setting than for multi-winner voting. Also open is
whether a semi-online rule can satisfy Strong EJR. More con-
ceptually, are there stronger versions of EJR for this setting
that are still satisfiable? Can the concept of proportionality
degree (Skowron 2021) be adapted to our setting? What about
FJR (Full Justified Representation) or the core?

Strategic Issues Peters (2018) proved an impossibility the-
orem showing that no proportional multi-winner voting rule
can be strategyproof : voters may be able to get a better out-
come by misrepresenting their preferences. For the special
case of “approval-based apportionment” (Brill et al. 2022;
Airiau et al. 2023), the impossibility still holds (Delemazure
et al. 2023; Lackner, Maly, and Nardi 2023), Because this is
also a special case of our model (when the set of alternatives
and voter preferences are the same in each round), it follows
that no proportional rule in our setting can be strategyproof.
Further, the order in which the set of issues are presented
can also change the outcomes of online rules and this may
present another possibility for manipulation.
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