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Abstract
We use social choice theory to develop correlation
coefficients between ranked preferences and an or-
dinal attribute such as educational attainment or
income level. For example, such correlations could
be used to formalise statements such as “voters’
preferences over parties are better explained by age
than by income level”. In the literature, preferences
that are perfectly explained by a single-dimensional
agent attribute are commonly taken to be single-
crossing preferences. Thus, to quantify how well
an attribute explains preferences, we can order the
voters by the value of the attribute and compute how
far the resulting ordered profile is from being single-
crossing, for various commonly studied distance
measures (Kendall tau distance, voter/alternative
deletion, etc.). The goal of this paper is to evaluate
the computational feasibility of this approach. To
this end, we investigate the complexity of computing
these distances, obtaining an essentially complete
picture for the distances we consider.

1 Introduction
A key task of social science is to understand and explain
people’s preferences and attitudes. A psychologist might
ask survey participants how much they agree with a state-
ment on a 1–10 scale (from “disagree” to “agree”). The
researcher can then compute correlations between this quantity
and participants’ attributes such as age, income, or educational
attainment.

This way of explaining attitudes and preferences in terms of
attributes has proved powerful—but it is intrinsically limited.
In particular, this method cannot easily explain complex prefer-
ences that are not captured by a single numerical response. For
example, suppose we want to ask participants to rank various
forms of energy generation (such as coal, solar, nuclear) in
terms of desirability in their country’s energy mix. We might
suspect people’s answer to be mainly a function of their edu-
cation level, or maybe of their left-right political orientation.
How can we check this?

Statistics textbooks [e.g., de Vaus, 2002, p. 103] would rec-
ommend handling each energy source independently, and find
the correlation between participants’ education level (maybe

expressed as number of school years) and the rank of the
alternative in their ranking. A first complaint might be that this
approach cardinalises inherently ordinal information, but there
are notions of correlation for ordinal measures (e.g., Healey,
2008, Sec. 14.6; for example, take the Kendall tau distance
between ordering people by education and ordering them by
how they rank the alternative). A more severe problem of the
approach is that it ignores the finer structure of the preferences,
by considering each alternative on its own. Fundamentally,
this approach only answers questions like “do more-educated
people like solar more?” and not “are people’s preferences over
all energy sources well-explained by their education level?”

What would be a better way to answer questions of the latter
type? We use the lens of social choice theory, a well-developed
literature on handling preferences. While its main focus is on
preference aggregation, parts of it can be repurposed for the
goal of understanding preferences. This is particularly true for
work concerning structured preferences, which have received
much recent attention from computer scientists [Elkind et al.,
2016; 2017]. Our focus in this paper is a concept called single-
crossing preferences, which goes back to work on income
taxation [Mirrlees, 1971]. It turns out to be particularly relevant
for our goal of “correlating” preferences and attributes.
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Suppose we have obtained
rankings from 7 participants
over coal, nuclear, wind, and so-
lar (c, n,w, s respectively). We
write them as columns, and sort
them left-to-right by the voter
attribute. We might obtain the
picture on the right. The coloured lines track the rank of each
alternative and show an intriguing feature: any two of these
‘trajectories’ cross only once. For example, people on the left
prefer wind to solar and people on the right prefer solar to
wind; and a similar pattern holds for every pair of alternatives.
This is the single-crossing property. In our view, this property
implies that the rankings have been sorted “correctly”, and it
is easy to check that a single-crossing order is always unique
(up to mirroring and reordering identical votes). Thus, we
hold that an attribute that orders people as shown “perfectly
correlates” with the preferences.

In profiles with a large number of agents, there may not exist
an ordering which makes the profile single-crossing, either
due to noise or due to intrinsic complexity of the preferences.



Still, some orderings might be better than others, in the sense
of making the profile almost single-crossing. In this paper, we
propose a way to measure the quality of different orderings in
terms of notions of distance to being single-crossing.
To be concrete, suppose we are given a profile of rankings

which are ordered in a fixed way (e.g., sorted by an exogenously
given attribute). This profile is not single-crossing. How far
away is it? A natural measure is provided by the Kendall
tau distance: we ask how many times we need to swap two
adjacent alternatives in one of the rankings until the profile is
single-crossing (“global swaps”). Instead of counting the total
number of swaps, we can also count the maximum number of
swaps applied to any single ranking (“local swaps”). More
coarse measures can also be sensible: for example, some of
the rankings may be outliers, so we can count the number of
rankings that need to be deleted until the rest is single-crossing
(“voter deletion”). We consider some other distances as well;
the best choice of distance will depend on the context.
Compared to the traditional method of computing corre-

lations independently for each alternative, our proposals are
more combinatorial and complex. In fact, it is not clear how
to compute these distance measures efficiently. While we
develop an efficient algorithm to evaluate the voter deletion
distance, for most other metrics we prove that evaluation is
NP-hard (see Table 1). This should not be a major impediment
to using our notions in practice, and we show that evaluating
the swap-based metrics becomes easy (in the FPT or XP sense)
if the profile in question is very close to being single-crossing.

The literature on structured preferences has introduced and
studied problems similar to ours. The most popular notion
of structure is single-peakedness, which assumes that the
alternative space is one-dimensional. The concept of nearly
single-peaked preferences was suggested by Faliszewski et
al. [2014], and then a number of authors have considered the
complexity of identifying preferences that are nearly single-
peaked [Erdélyi et al., 2017; Bredereck et al., 2016; Elkind
et al., 2012; Cornaz et al., 2013], i.e., can be made single-
peaked by deleting a few voters or alternatives, merging small
groups of similar alternatives, performing a few swaps of
adjacent alternatives in voters’ rankings, or partitioning voters
or candidates into a few groups so that the profile is single-
peaked when restricted to one of these groups. Nearly single-
crossing preferences have also been studied [Bredereck et al.,
2016; Jaeckle et al., 2018]. However, those papers focused on a
setting that is crucially different: they do not fix the ordering of
the rankings, so the algorithms may rearrange them arbitrarily
to obtain a single-crossing profile. That regime makes sense
for voting, if we are aiming to use fast winner determination
algorithms that require single-crossing input [e.g., Skowron et
al., 2015], but it is not relevant for our aim of quantifying the
explanatory power of a given voter attribute.
For consistency with the literature on nearly structured

preferences, in what follows we will use the terminology of
computational social choice; for example, we refer to agents
as voters. Due to space constraints, we omit some proofs.

2 Preliminaries
For an integer n, we write [n] = {1, . . . , n}.

Preferences Let A be a finite set of alternatives. A linear
order v over A is a binary relation that is asymmetric, total,
and transitive. We write L(A) for the set of linear orders over
A. A profile P = (v1, . . . , vn) is a list of linear orders; we write
|P | = n and refer to elements of P as votes, and to elements
of [n] as voters. We write a �i b when (a, b) ∈ vi , i.e., when
voter i prefers a to b. Let P(A) denote the set of all profiles
over A. Given t profiles P1, . . . , Pt ∈ P(A), let P1+ · · ·+Pt be
the profile obtained by concatenating P1, . . . , Pt (in the given
order); if P1 = · · · = Pt = P, we write tP for P1 + · · · + Pt .
Let X ⊆ A be a subset of alternatives. For a linear order v,

we write v |X = v∩(X ×X), and for a profile P, we write P |X =
(v1 |X, . . . , vn |X ); v |X and P |X are, respectively, the linear order
and the profile obtained by restricting the alternative set to X .
Given a subset I ⊆ [n], we denote by PI the profile obtained
from P by deleting all voters in [n] \ I.
A profile P ∈ P(A) is single-crossing (in the given order)

if for each pair a, b ∈ A of alternatives such that a �1 b there
is some i ∈ [n] such that a �j b for all j ∈ [i] and b �j a for
all j ∈ [n] \ [i]. We say that a profile P is single-crossing up
to a permutation if the votes in P can be permuted so that the
resulting profile is single-crossing in the given order. Given
a profile P ∈ P(A), |P | = n, we say that a pair of alternatives
{a, b} is multi-crossing if there exist i, j, k ∈ [n], i < j < k,
such that a �i b, b �j a, a �k b. Note that a profile is
single-crossing in the given order if and only if no pair of
alternatives is multi-crossing.

Graph-theoretic background An undirected graph is a pair
G = (A, L), where A is a set of vertices and L is a collection of
size-two subsets of A, which are referred to as edges. A vertex
set X ⊆ A is an independent set if for every a, b ∈ X we have
{a, b} < L. A mapping χ : A→ [k] is a k-colouring of G if
for each i ∈ [k] the set {a ∈ A | χ(a) = i} is an independent
set. A graph G = (A, L) is s-regular if for each a ∈ A we have
|{e ∈ L | a ∈ e}| = s. We denote the set of all graphs with
vertex set {a1, . . . , am} by Gm.

Parameterised complexity A popular approach to deal with
NP-complete problems is to consider their complexity as a
function of certain problem parameters [see, e.g., Downey and
Fellows, 2013], such as the number of alternatives or voters.
Problems that admit algorithms whose running time is of the
form f (p)poly(n), where p is the value of the parameter, f is
a computable function, and n is the instance size, are called
fixed parameter-tractable (FPT) with respect to p; these are
the ‘easiest’ problems in the parameterised sense. A problem
belongs to the complexity class XP with respect to p if it
can be solved in polynomial time for each fixed value of p (it
admits an algorithm with running time n f (p) for a computable
function f ). Clearly, FPT ⊆ XP.

3 Pairwise Swaps
We begin with our most fine-grained distance concepts, namely,
the ones that are based on swaps. Swapping a pair of adja-
cent alternatives is, arguably, a minimal change to a pref-
erence profile, and so it makes sense to count the number
of such changes as a distance. This yields the Kendall tau
distance, which counts the number of pairs of alternatives



Computational problem Recognition Small n and parameterised
Alternative Deletion NPc (Th.6) NPc for n > 4 (Th.7), in P for n = 3 (Cor.9), FPT wrt k (Pr.5)
k-Alternative Partition NPc (Th.6) NPc for n > 4 (Th.8), in P for n = 3 (Cor.9) or k = 2 (Pr.5)
Global Swaps NPc (Th.1) FPT wrt k (Th.3)
Local Swaps NPc (Th.2) XP wrt k (Cor.4)
Voter Deletion O(n3m2) (Pr.12) n/a
Contiguous Voter Partition O(nm2) (Pr.12) n/a
Interleaving Voter Partition ? XP wrt k (Th.13)
Voter Reordering O(n(log n+m2)) (Pr.14) n/a

Table 1: Overview of complexity results. Here n is the number of voters, m is the number of alternatives, and k is the ‘budget’, such as, e.g., the
maximum number of alternatives that can be deleted. ‘NPc’ stands for ‘NP-complete’.

on which two linear orders disagree. This distance model is
also well-motivated when voters’ preferences are noisy, and
this is the reason why the profile is not single-crossing. For-
mally, given two votes vi, vj , we define dK (vi, vj) = |∆(vi, vj)|,
where ∆(vi, vj) = {{a, b} | a �i b, b �j a}. This distance
can be extended to n-voter profiles: if P = (v1, . . . , vn) and
Q = (u1, . . . , un), we set dK (P,Q) =

∑
i∈[n] dK (vi, ui). The

egalitarian, or `0, variant of this distance uses the maximum
number of swaps per voter: degal(P,Q) = maxi∈N d(vi, ui).

These definitions suggest the following decision problems.
Definition 1. An instance of Global Swaps (respectively,
Local Swaps) problem is given by a profile P and an integer k.
It is a yes-instance if and only if there exists a profile Q that is
single-crossing in the given order and satisfies dK (P,Q) 6 k
(respectively, degal(P,Q) 6 k).

We will show that both of these problems are NP-complete.
Our proof is by reduction from the problem of computing,
respectively, the Kemeny distance and the egalitarian Kemeny
distance. Thus, we reduce from one voting problem to another,
and this allows the proof to be short and simple.
A profile P = (v1, . . . , vn) is unanimous if vi = vj for

all i, j ∈ [n]. An instance of Kemeny score (respectively,
Egalitarian Kemeny score) is given by a profile P and an
integer s; it is a yes-instance if there exists a unanimous profile
Q with dK (P,Q) 6 s (respectively, with degal(P,Q) 6 s). Both
of these problems are NP-complete [Bartholdi III et al., 1989;
Biedl et al., 2009].
Theorem 1. Global Swaps is NP-complete.

Proof. This problem is clearly in NP. To prove NP-hardness,
we reduce from Kemeny score. We map an instance 〈P, s〉
of Kemeny score with P ∈ P(A), |A| = m, to an instance
〈tP, ts〉 of Global Swaps, where t = (s + 1)

(m
2
)
+ 1.

If 〈P, s〉 is a yes-instance of Kemeny score, there is a
unanimous profile Q with dK (P,Q) 6 s. So tQ is unanimous
and hence single-crossing in the given order, and dK (tP, tQ) 6
ts. Hence 〈tP, ts〉 is a yes-instance of Global Swaps.
Conversely, suppose 〈tP, ts〉 is a yes-instance of Global

Swaps, and R is a profile that is single-crossing in the given
order and satisfies d(tP, R) 6 ts. Split R as R1+· · ·+Rt , |Rj | =
n for each j ∈ [t]. We say that the i-th vote in R is a crossing
point for alternatives a, b ∈ A if the i-th voter in R prefers a to
b, while the (i + 1)-st voter prefers b to a. Since R is single-
crossing in the given order, there is at most one crossing point

for each pair {a, b} ⊆ A, and hence at most
(m

2
)
crossing points

altogether. Let J = { j ∈ [t] | Rj contains no crossing points}.
Then |J | > t −

(m
2
)
> 1. Now, if dK (P, Rj) > s for all j ∈ J,

we can lower-bound dK (tP, R) as

(s + 1)|J | > (s + 1)
(
t −

(m
2
) )
= st + t − (s + 1)

(m
2
)
> st,

a contradiction. Hence, dK (P, Rj) 6 s for some j ∈ J. Since
Rj contains no crossing points, it is unanimous, which means
that we started with a yes-instance of Kemeny score. �

A similar argument works for Local Swaps.
Theorem 2. Local Swaps is NP-complete.

On the positive side, Global Swaps turns out to be fixed-
parameter tractable with respect to the number of swaps.
Theorem 3. Global Swaps is in FPT with respect to k.

Proof. We use the bounded search tree technique. Specifically,
we describe an algorithm that starts with a budget of k swaps
and aims to transform P into a profile that is single-crossing
in the given order. It makes some non-deterministic choices,
but the number of such choices at each decision node can be
bounded by a function that depends on k only; the algorithm
rejects a given non-deterministic branch if it has already
performed k swaps along this branch, but has not obtained a
single-crossing profile yet. This algorithm can be simulated
by a deterministic algorithm that explores all branches of
non-determinism in order of depth-first search.
Throughout the algorithm, we label some triples (i, a, b),

where i ∈ [n] and a, b ∈ A as fixed; intuitively, once a triple
has been fixed, we cannot change the preferences of voter i
over the pair {a, b}. Initially, the set of fixed triples is empty.

Given a voter i and two alternatives a, b ∈ A such that a �i b,
we denote by i[a, b] the set of alternatives that i ranks between
a and b (including a and b). We modify voters’ preferences
while executing the algorithm; the set i[a, b] is defined with
respect to the current preferences of voter i.
The algorithm maintains a stack of pairs of alternatives
{a, b}. At the beginning of the algorithm, we push all pairs
of alternatives that are multi-crossing in P onto this stack. At
each stage of the algorithm we pop one pair of alternatives
off the stack and change some voters’ preferences so that this
pair is no longer multi-crossing; the swap budget is updated
to account for these changes, and we reject if we run out of
budget or if it is clear that the current pair cannot be ‘fixed’



within the remaining budget. As a result of our changes, some
new pairs of alternatives may become multi-crossing, and they
are then pushed on the stack. The algorithm returns ‘yes’ if
for some sequence of non-deterministic choices it can reach a
state where at the end of a stage the stack is empty.
It remains to describe what we do once we have popped

some pair {a, b} off the stack. Let r be the remaining swap
budget at this point, i.e., we assume that the algorithm has
already performed k − r swaps.

We say that i ∈ {0} ∪ [n] is a crossing point for {a, b} if (1)
i = 0, (2) i = n, or (3) 0 < i < n and voters i and i + 1 disagree
on {a, b}, i.e., a �i b, b �i+1 a. Let (i1, . . . , it ), i1 < · · · < it ,
be the ordered list of crossing points for {a, b}. For each
` ∈ [t − 1], all voters between i` + 1 and i`+1 agree on {a, b},
i.e., the list of voters can be split into t − 1 intervals, where
all voters in the same interval agree on {a, b}. Note that a
single swap reduces the number of intervals by at most 2 (e.g.,
if two intervals where all voters prefer a to b are separated
by a single voter who prefers b to a, swapping b and a in the
preferences of that voter merges these three intervals into one).
Thus, if t − 1 − 2r > 2, we can safely reject, as a and b will
necessarily remain multi-crossing after we perform r or fewer
swaps. Thus, from now on we assume that t 6 2r +2 6 2k +2.

Now, we have to ‘fix’ the pair {a, b} so that there is at most
one crossing point. To this end, we non-deterministically
guess the first voter’s preference over the pair {a, b} and the
new crossing point i ∈ [n] (i = n corresponds to the case
where all voters agree on {a, b}); these two guesses completely
determine all voters’ preferences over {a, b}. Importantly, i
need not belong to {i1, . . . , it }, but we can limit our guesses
for i to lie within an r-neighborhood of some existing crossing
point for {a, b}, i.e., we will only consider values of i such
that |i − i` | 6 r for some ` ∈ [t]. Indeed, if ip < i < ip+1 and
i−ip > r , ip+1−i > r , then, to make i the unique crossing point,
we would have to swap a and b in the preferences of all voters
ip + 1, . . . , i or in the preferences of all voters i + 1, . . . , ip+1,
i.,e., perform more than r swaps. This means that we only
have to consider (2r + 1)t 6 (2k + 1)(2k + 2) positions for the
new crossing point; this quantity does not depend on n or m.
Let us say that a voter i is bad if her current preferences

over {a, b} are different from what is implied by our guess
for the crossing point and the preferences of the first voter;
denote the set of all bad voters by B. Next, we would like to
swap a and b in the preferences of the bad voters. There is
a difficulty, however: if for some voter i ∈ B alternatives a
and b are not adjacent in i’s current vote, i.e., if |i[a, b]| > 2,
changing i’s preferences over {a, b} results in preferences that
are not transitive. If we want i’s preferences to be a (transitive)
linear order, each alternative in i[a, b] \ {a, b} would have to
be swapped with a or b. This means, in particular, that we can
reject if |i[a, b]| > r + 2 for some bad voter i, so from now on
we assume that |i[a, b]| 6 r + 2 for each i ∈ B.

Now, we process the voters in B one by one. For each i ∈ B
we non-deterministically guess an ordering of all alternatives
in i[a, b] in i’s preferences; for a given voter, there are at most
|i[a, b]| | 6 (r + 2)! 6 (k + 2)! options to consider. We reject
our guess if (1) it does not swap a and b, or (2) the Kendall
tau distance between the new vote for i and her current vote
exceeds r, or (3) our guess is inconsistent with the current

set of fixed triples: i.e., c �i d, (i, c, d) is a fixed triple, and
we have guessed a permutation of i[a, b] where d is placed
above c. Otherwise, we reorder the alternatives in i[a, b] in the
ranking of voter i according to our guess, and add all triples of
the form (i, c, d), c, d ∈ i[a, b], to the set of fixed triples.
Once we have processed all voters in B, the pair {a, b}

is no longer multi-crossing; however, some other pairs may
have become multi-crossing. Thus, once all voters in B have
been processed, we scan the resulting profile and add all the
newly multi-crossing pairs to the stack. This completes the
description of a single stage of our algorithm.
It is immediate that our algorithm only accepts if it has

identified a profile that is single-crossing in the given order
and can be obtained from P by performing at most k swaps.
Conversely, we only reject if each non-deterministic branch is
eventually rejected, and this only happens if every choice we
consider does not result in a single-crossing profile after k or
fewer swaps. As we have argued that our algorithm explores
all options that may possibly lead to a positive answer, this
establishes correctness. For the analysis of running time, we
observe that each non-deterministic branch performs at most
k swaps and executes some fairly simple operations between
the swaps. Further, the number of non-deterministic choices
at each point is bounded by a function of k. This implies the
desired bound on the running time. �

For Local Swaps, we do not know if this problem is in FPT
with respect to k. However, Jaeckle et al. [2018] show that
the analogue of this problem for preferences that are single-
crossing up to a permutation is in XP with respect to k. This
proof can be modified to apply to our setting.
Corollary 4. Local Swaps is in XP with respect to k.

We note that (Egalitarian) Kemeny score is known to be
NP-hard even for n = 4, but our reductions do not preserve
the number of voters. We conjecture that Global Swaps and
Local Swaps remain hard for small values of n.

4 Alternative Deletion and Partition
In this section, we consider two notions of distance to single-
crossing preferences that are based on modifying the set of
alternatives. The first measure asks how many alternatives
need to be deleted to make the given profile single-crossing;
the second measure asks for the smallest value k such that
the alternatives can be split into k groups so that restricting
the voters’ preferences to each group results in a profile that
is single-crossing in the given order. Both of these measures
have been considered in the context of profiles that are nearly
single-peaked or single-crossing up to a permutation [Erdélyi
et al., 2017; Bredereck et al., 2016; Jaeckle et al., 2018].
Definition 2. An instance of Alternative Deletion is given
by a profile P ∈ P(A) and an integer k > 1. It is a yes-instance
if and only if there is a subset X ⊆ A with |X | > |A| − k such
that P |X is single-crossing in the given order.
Definition 3. An instance of k-Alternative Partition is
given by a profile P ∈ P(A). It is a yes-instance if and only
if A can be partitioned into k sets A1, . . . , Ak so that for each
j ∈ [k] the profile P |A j is single-crossing in the given order.



In a companion paper [Cohen et al., 2019] we introduce a
mapping between preference profiles and undirected graphs
that is useful for analysing the problems we consider here.
Specifically, given a profile P ∈ P(A), we define its crossing
graph as an undirected graph G = (A, L) such that {a, b} ∈ L
if and only if {a, b} is a multi-crossing pair in P. Note that P
can be made single-crossing by deleting a subset of alternatives
X ⊆ A if and only if X is a vertex cover of G; similarly, a
partition of A into k sets such that the restriction of A to each
set is single-crossing corresponds to a k-coloring of G. Since
Vertex Cover is in FPT with respect to the target cover size
k, and one can decide in polynomial time whether a graph is
2-colourable, we obtain the following easiness results.
Proposition 5. Alternative Deletion is in FPT with respect
to k, and 2-Alternative Partition is in P.
Cohen et al. [2019] prove, conversely, that any undirected

graph on m vertices is a crossing graph of a preference profile
with O(m) voters. The following hardness result is a corollary.
Theorem 6 (Cohen et al., 2019). Alternative Deletion is
NP-complete. k-Alternative Partition is NP-complete for
k > 3.
A limitation of the technique introduced by Cohen et al.

[2019] is that the construction behind Theorem 6 requires an
unbounded number of voters. We strengthen Theorem 6 by
showing that these problems remain hard even for a small
constant number of voters, namely even for n = 4 voters.
Theorem7. For every n > 4,Alternative Deletion remains
NP-complete when restricted to instances with n voters.

Proof. We reduce from the Independent Set problem. This
problem remains NP-hard for 3-regular graphs [Garey et al.,
1976]; thus, in our reduction we assume that the input graph G
is 3-regular. We establish hardness for n = 4; the result can
be extended to any n > 4 by creating additional n − 4 copies
of the last vote. Consider an instance 〈G, k〉 of Independent
Set, where G = (A, L), A = {a1, . . . , am}, L = {e1, . . . , es}
and G is 3-regular. For every edge e = {ai, aj} we create two
alternatives c(e, i) and c(e, j) and set Ce = {c(e, i), c(e, j)};
also, for each ai ∈ A we create two alternatives di and d ′i . For
each ai ∈ A, let Ci = {c(e, i) | ai ∈ e} and Di = {di, d ′i }; note
that |Ci | = 3, since G is 3-regular.

We will now describe the profile P. For readability, we first
explain how voters rank various groups of alternatives, and
then describe their preferences within these groups.

The first two voters’ rankings are of the form
Ce1 � · · · � Ces � D1 � · · · � Dm,

the third voter’s ranking is of the form
D1 �3 C1 �3 · · · �3 Dm �3 Cm,

and the fourth voter’s ranking is of the form
C1 �4 D1 �4 · · · �4 Cm �4 Dm;

the order of alternatives within each group is described next.
For each ai ∈ A all voters rank the alternatives in Di

as di � d ′i . For each e = {ai, aj} ∈ L with i < j, set
c(e, i) �1 c(e, j), c(e, j) �2 c(e, i). Now, fix an i ∈ [m] and
suppose that Ci = {c(ex, i), c(ey, i), c(ez, i)}, where x < y < z.

The third and the fourth voter rank the alternatives in Ci as
c(ex, i) � c(ey, i) � c(ez, i).

In the resulting profile for each e = {ai, aj} ∈ L the alterna-
tives c(e, i) and c(e, j) are multi-crossing; also, for each ai ∈ A
every pair {c, d} with c ∈ Ci, d ∈ Di is multi-crossing. No
other pair of alternatives is multi-crossing.

Suppose X ⊆ A is an independent set of size s in G. Let

Y =
⋃
ai ∈X

Ci ∪
⋃
ai<X

Di .

Then |Y | = 3|X | + 2(m − |X |) = 2m + s, and P |Y is single-
crossing in the given order. Conversely, suppose that there
is a set of alternatives Z , |Z | > 2m + s, such that P |Z is
single-crossing in the given order. Let X = {ai ∈ A | Ci ⊆ Z}.
Then X is an independent set in G: if e = {ai, aj} ⊆ X for
some e ∈ L then Ce ⊆ Z , a contradiction with P |Z being
single-crossing in the given order. We will now show that
|X | > s. Note that for each i ∈ [m] we have Z ∩ Ci = � or
Z ∩ Di = � and hence |Z ∩ (Ci ∪ Di)| 6 3 and, moreover,
|Z ∩ (Ci ∪ Di)| = 3 if and only if Ci ⊆ Z , i.e., ai ∈ X . We
have 2m + s 6 |Z | 6 3|X | + 2(m − |X |) and hence |X | > s.
Thus, 〈G, s〉 is a yes-instance of Independent Set if and only
if 〈P, 2m+ s〉 is a yes-instance of Alternative Deletion. �

The proof for alternative partition is similar.
Theorem 8. For each n > 4 and each k > 3, k-Alternative
Partition remains NP-complete when restricted to instances
with n voters.
Now, clearly, Alternative Partition and Alternative

Deletion are easy for n = 2, as every 2-voter profile is single-
crossing. It turns out that the remaining case n = 3 is easy, too,
for an interesting graph-theoretic reason: Cohen et al. [2019]
prove that crossing graphs of 3-voter profiles are perfect (for
a definition of perfect graphs see, e.g., Diestel, 2012). The
problems of finding a vertex cover or a k-colouring are in P
for perfect graphs, and so we obtain the following corollary,
which shows that the hardness results in Theorems 7 and 8 are
tight with respect to the number of voters.
Corollary 9 (Cohen et al., 2019). Alternative Deletion
and k-Alternative Partition are polynomial-time solvable
when restricted to instances with three voters.

5 Voter Deletion, Partition and Reordering
Finally, we look at distance measures that alter the set of voters.
Definition 4. An instance of Voter Deletion is given by a
profile P ∈ P(A), |A| = m, |P | = n, and an integer k > 1. It
is a yes-instance if and only if there is a subset I ⊆ [n] with
|I | > n − k such that PI is single-crossing in the given order.
Bredereck et al. [2016] give a dynamic program for the

voter deletion problem aiming for single-crossing up to a
permutation. The same idea works in our setting.
Proposition 10. Voter Deletion can be solved in time
O(n3m2).
We can also partition voters into several single-crossing

subprofiles. We define two variants of this problem: in the
first variant, each part of the partition must form a contiguous
block, and in the second variant parts may interleave.



Definition 5. An instance of Contiguous Voter Partition is
given by a profile P ∈ P(A), |A| = m, |P | = n, and an integer
k > 1. It is a yes-instance if and only if there exist k profiles
P1, . . . , Pk such that Pj is single-crossing in the given order
for each j ∈ [k] and P = P1 + · · · + Pk .
Definition 6. An instance of Interleaving Voter Partition
is given by a profile P ∈ P(A), |A| = m, |P | = n, and an
integer k > 1. It is a yes-instance if and only if the set
[n] can be partitioned into k sets I1, . . . , Ik so that for each
j ∈ [k] the profile Pj obtained from P by removing the voters
in {vi | i ∈ [n] \ Ij} is single-crossing in the given order.
These two problems seem different from a complexity per-

spective: Contiguous Voter Partition can be solved by a
simple greedy algorithm, but we do not know if Interleaving
Voter Partition is in P. However, the latter problem is in
the class XP with respect to k. Our analysis makes use of the
following simple lemma [see, e.g., Jaeckle et al., 2018, Sec. 2].
Lemma 11. Let P = (v1, . . . , vn) ∈ P(A) be a single-crossing
profile. Let vn+1 be a vote in L(A). Then P + (vn+1) is
single-crossing in the given order if and only if (v1, vn, vn+1) is.
Proposition 12. Contiguous Voter Partition can be solved
in time O(nm2).

Proof. Let P = (v1, . . . , vn). We construct the profiles
P1, . . . , Pk greedily. Initially we set j = 1, P1 = �. We
process the votes in P from left to right. When considering the
vote vi , we check whether Pj + (vi) is single-crossing in the
given order (this can be done in time O(m2) by Lemma 11).
If yes, we set Pj := Pj + (vi) and otherwise we set j := j + 1,
Pj = (vi). We stop once all votes have been processed, and
output the number of subprofiles in our partition. We omit the
proof of correctness. �

Theorem 13. Interleaving Voter Partition can be solved
in time O(n2k+3m2).

Proof. We guess k voters f1, . . . , fk ; we then check if there is
an interleaving partition such that the first voter in part j is fj ,
for j ∈ [k]. Note that there are at most nk guesses to consider.
We then proceed by dynamic programming. For each i ∈ [n]
and `1, . . . , `k ∈ [i] ∪ {⊥}, let A[i; `1, . . . , `k] = 1 if there is
a partition of [i] into k pairwise disjoint sets I1, . . . , Ik such
that for each j ∈ [k] it holds that PIj is single-crossing in the
given order, `j = ⊥ if and only if fj > i, and, moreover, if
fj 6 i then the first voter in Ij is fj and the last voter in Ij is
`j ; otherwise, let A[i; `1, . . . , `k] = 0.
For i = 1, we have A[i; `1, . . . , `k] = 1 if and only if there

is a j ∈ [k] with fj = `j = 1, `t = ⊥ for t ∈ [k] \ { j}. For
i > 1 we have A[i; `1, . . . , `k] = 1 if and only if i = `j for some
j ∈ [k] and either (1) A[i − 1; `1, . . . , `j−1,⊥, `j+1, . . . , `k] = 1
and fj = i or (2) A[i − 1; `1, . . . , `j−1, t, `j+1, . . . , `k] = 1 for
some t , ⊥ and (v fj , vt, v`j ) is single-crossing in the given
order. Here, case (1) corresponds to a partition of [i] in which
i is a singleton and case (2) corresponds to a partition where
i is appended to an existing part. The correctness of this
expression follows from Lemma 11. For each initial guess,
our dynamic program has O(nk+1) variables, and each variable
can be computed in time O(n2m2). This implies our bound on
the running time. �

Suppose we are given a profile that is not single-crossing in
the given order, but can be made single-crossing by rearranging
the voters according to a permutation π. Then we can measure
how good the input order is by the number of voter swaps
performed by π.
Definition 7. An instance of Voter Reordering is given by
a profile P and an integer k. It is a yes-instance if we can
perform at most k successive swaps of adjacent voters to make
P single-crossing in the given order.
This problem turns out to be polynomial-time solvable.

Proposition 14. Voter Reordering can be solved in time
O(nm2 + n log n).

6 Discussion and Conclusions
We have suggested a way of correlating voters’ attributes with
preferences, which in formal terms is the problem of deciding
whether an input profile is close to being single-crossing
in the given order. Let us close the paper by discussing
technical connections to previous work on almost structured
preferences. As with other papers on this topic, we have
focused on computational issues, and have determined the
problems’ complexity for most notions of closeness that have
been considered in the literature. Due to space constraints, we
did not analyse closeness measures that are based on collapsing
similar alternatives [Elkind et al., 2012; Cornaz et al., 2013];
it can be shown that the respective decision problems admit
simple polynomial-time algorithms.
From the complexity perspective, our results for the fixed

voter order essentially mirror the known results for deciding
if a profile is nearly single-crossing up to a permutation: e.g.,
alternative deletion/partition is hard and voter deletion is easy
in both settings, and our hardness results for global and local
swaps can be extended to the setting where voters can be
permuted (we omit the proof of this result as it is tangential to
the topic of the paper). There are, however, a few examples
where we were able to obtain a positive algorithmic result for
our setting, but it is not clear how to extend it to the setting
where permutations are allowed; this is the case, e.g., for our
FPT algorithm for Global Swaps or our XP algorithm for
Interleaving Voter Partition. On the other hand, there are
no examples of problems that become computationally harder
when the voter order is fixed.

In contrast, in the context of single-peaked preferences,
knowing the axis reduces the complexity considerably, as
shown by Erdélyi et al. [2017]. Thus, for nearly single-peaked
preferences the main computational challenge is to determine
the right axis, whereas the complexity of identifying nearly
single-crossing preferences when the order of the voters is not
known stems both from having to determine the order of voters
and from figuring out the optimal modifications to the votes.
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