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ABSTRACT
Multiwinner voting rules can be used to select a fixed-size com-

mittee from a larger set of candidates. We consider approval-based

committee rules, which allow voters to approve or disapprove can-

didates. In this setting, several voting rules such as Proportional

Approval Voting (PAV) and Phragmén’s rules have been shown to

produce committees that are proportional, in the sense that they

proportionally represent voters’ preferences; all of these rules are

strategically manipulable by voters. On the other hand, a generalisa-

tion of Approval Voting gives a non-proportional but strategyproof

voting rule. We show that there is a fundamental tradeoff between

these two properties: we prove that no multiwinner voting rule can

simultaneously satisfy a weak form of proportionality (a weakening

of justified representation) and a weak form of strategyproofness.

Our impossibility is obtained using a formulation of the problem

in propositional logic and applying SAT solvers; a human-readable

version of the computer-generated proof is obtained by extracting

a minimal unsatisfiable set (MUS). We also discuss several related

axiomatic questions in the domain of committee elections.
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1 INTRODUCTION
The theory of multiwinner elections is concerned with designing

and analysing procedures that, given preference information from

a collection of voters, select a fixed-size committee consisting of k
members, drawn from a larger set ofm candidates. Often, we will

be interested in picking a representative committee whose members

together cover the diverse interests of the voters. We may also aim

for this representation to be proportional; for example, if a group
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of 20% of the voters have similar interests, then about 20% of the

members of the committee should represent those voters’ interests.

Historically, much work in mathematical social science has tried

to formalise the latter type of proportionality requirement, in the

form of finding solutions to the apportionment problem, which arises

in settings where voters express preferences over parties which are

comprised of many candidates [5]. More recently, theorists have

focussed on cases where there are no parties, and preferences are

expressed directly over the candidates [23]. The latter setting allows

for applications in areas outside the political sphere, such as in

group recommendation systems.

To formalise the requirement of proportionality in this party-free

setting, it is convenient to consider the case where input preferences

are given as approval ballots: each voter reports a set of candidates

that they find acceptable. Even for this simple setting, there is a

rich variety of rules that exhibit different behaviour [31], and this

setting gives rise to a rich variety of axioms.

One natural way of selecting a committee of k candidates when

given approval ballots is to extend Approval Voting (AV): for each

of them candidates, count how many voters approve them (their

approval score), and then return the committee consisting of the k
candidates whose approval score is highest. Notably, this rule can

produce committees that fail to represent large groups of voters.

Consider, for example, an instance where k = 3, and where 5 voters

approve candidates a, b and c , while 4 other voters approve only the
candidate d . Then AV would select the committee {a,b, c}, leaving
almost half of the electorate unrepresented. Intuitively, the latter

group of 4 voters, consisting of more than a third of the electorate,

should be represented by at least 1 of the 3 committee members.

Aziz et al. [3] introduce an axiom called justified representation
(JR) which formalises this intuition that a group ofn/k voters should
not be left without any representation; a stronger version of this

axiom called proportional justified representation (PJR) has also been
introduced and studied [39]. While AV fails these axioms, there

are appealing rules which satisfy them. An example is Proportional
Approval Voting (PAV), first proposed by Thiele [46]. The intuition

behind this rule is that voters prefer committees which contain

more of their approved candidates, but that there are decreasing

marginal returns; specifically, let us presume that voters gain 1 ‘util’

in committees that contain exactly 1 approved candidates, 1+ 1

2
utils

with 2 approved candidates, and in general 1+ 1

2
+ · · ·+ 1

r utils with

r approved candidates. PAV returns the committee that maximises

utilitarian social welfare with this choice of utility function. PAV

satisfies a strong form of justified representation [3].

When voters are strategic, PAV has the drawback that it can often

be manipulated. Indeed, suppose a voter i approves candidates a
and b. If a is also approved by many other voters, PAV is likely to

include a in its selected committee anyway, but it might not include

b because voter i is already happy enough due to the inclusion of a.



However, if voter i pretends not to approve a, then it may be utility-

maximising for PAV to include both a and b, so that i successfully
manipulated the election.

1
Besides PAV, there exist several other

proportional rules, such as rules proposed by Phragmén [14, 30],

but all of them can be manipulated using a similar strategy.

That voting rules are manipulable is very familiar to voting

theorists; indeed the Gibbard–Satterthwaite theorem shows that

for single-winner voting rules and strict preferences, every non-

trivial voting rule is manipulable. However, in the approval-based

multiwinner election setting, we have the tantalising example of

Approval Voting (AV): this rule is strategyproof in the sense that

voters cannot induce AV to return a committee including more

approved candidates by misrepresenting their approval set. This

raises the natural question of whether there exist committee rules

that combine the benefits of AV and PAV: are there rules that are

simultaneously proportional and strategyproof?

The contribution of this paper is to show that these two demands

are incompatible. No approval-based multiwinner rule satisfies both

requirements. This impossibility holds even for very weak versions

of proportionality and of strategyproofness. The version of propor-

tionality we use is much weaker than JR. It requires that if there is

a group of at least n/k voters who all approve a certain candidate c ,
and none of them approve any other candidate, and no other voters

approve c , then c should be part of the committee. Strategyproof-

ness requires that a voter cannot manipulate the committee rule

by dropping candidates from their approval ballot; a manipulation

would be deemed successful if the voter ends up with a committee

that contains additional approved candidates. In particular, our no-

tion of strategyproofness only requires that the committee rule be

robust to dropping candidates; we do not require robustness against
arbitrary manipulations that both add and remove candidates. Ad-

ditionally, we impose a mild efficiency axiom requiring that the

rule not elect candidates who are approved by none of the voters.

The impossibility theorem is obtained using computer-aided

techniques that have recently found success in many areas of social

choice theory [27]. We encode the problem of finding a committee

rule satisfying our axioms into propositional logic, and then use

a SAT solver to check whether the formula is satisfiable. If the

formula is unsatisfiable, this implies an impossibility, for a fixed

number of voters, a fixed number of candidates, and a fixed k .
We can then manually prove induction steps showing that the

impossibility continues to hold for larger parameter values. Such

techniques were first used by Tang and Lin [44] to give alternative

proofs of Arrow’s and other classic impossibilities, and by Geist

and Endriss [26] to find impossibilities for set extensions. Brandt

and Geist [12] developed a method based on minimal unsatisfiable
sets that allows extracting a human-readable proof of the base case
impossibility. Thus, even though parts of the proofs in this paper

are computer-generated, they are entirely human-checkable.

We begin our paper by describing several possible versions of

strategyproofness and proportionality axioms. We then explain

the computer-aided method for obtaining impossibility results in

more detail, and present the proof of our main theorem. We end by

1
For a specific example, consider P = (abc , abc , abc , abd , abd ) for which abc is

the unique PAV-committee for k = 3. If the last voter instead reports to approve d
only, then the unique PAV-committee is abd .

discussing some extensions to this result, and contrast our result to

a related impossibility theorem due to Duddy [17].

2 PRELIMINARIES
LetC be a fixed finite set ofm candidates, and let N = {1, . . . ,n} be
a fixed finite set of n voters. An approval ballot is a proper2 subset
Ai of C , so that ∅ , Ai ⊊ C; let B denote the set of all ballots. For

brevity, when writing ballots, we often omit braces and commas, so

that the ballot {a,b} is written ab. An (approval) profile is a function
P : N → B assigning every voter an approval ballot. For brevity,

we write a profile P as an n-tuple, so that P = (P(1), . . . , P(n)). For
example, in the profile (ab,abc,d), voter 1 approves candidates a
and b, voter 2 approves a, b, and c , and voter 3 approves d only.

Let k be a fixed integer with 1 ⩽ k ⩽m. A committee is a subset
of C of cardinality k . We write Ck for the set of committees, and

again for brevity, the committee {a,b} is written asab. An (approval-
based) committee rule is a function f : BN → Ck , assigning to

each approval profile a unique winning committee. Note that this

definition assumes that f is resolute, so that for every possible

profile, it returns exactly one committee. In our proofs, we will

implicitly restrict the domain of f to profiles P with |
⋃
i ∈N P(i)| ⩾

k , so that it is possible to fill the committee with candidates who

are each approved by at least one voter. Since we are aiming for

a negative result, this domain restriction only makes the result

stronger.

Let us define two specific committee rules which will be useful

examples throughout.

Approval Voting (AV) is the rule that selects the k candidates

with highest approval score, that is, the k candidates c for which
|{i ∈ N : c ∈ P(i)}| is highest. Ties are broken lexicographically.

Proportional Approval Voting (PAV) is the rule that returns the
setW ⊆ C with |W | = k which maximises∑

i ∈N

(
1 +

1

2

+ · · · +
1

|P(i) ∩W |

)
.

In case of ties, PAV returns the lexicographically first optimum.

Other important examples that we occasionally mention are

Monroe’s rule, Chamberlin–Courant, Phragmén’s rules, and the

sequential version of PAV. For definitions of these rules, we refer to

the book chapter by Faliszewski et al. [23]; they are not essential

for following our technical results.

3 OUR AXIOMS
In this section, we discuss the axioms that will be used in our

impossibility result. These axioms have been chosen to be as weak

as possible while still yielding an impossibility. This can make them

sound technical and unnatural in isolation. To better motivate them,

we discuss stronger versions that may have more natural appeal.

3.1 Strategyproofness
A voter canmanipulate a voting rule if, by submitting a non-truthful

ballot, the voter can ensure that the voting rule returns an outcome

that the voter strictly prefers to the outcome at the truthful pro-

file. It is not obvious how to phrase this definition for committee

2
Nothing hinges on the assumption that ballots are proper subsets. Since we are mainly

interested in impossibilities, this ‘domain restriction’ slightly strengthens the results.



rules, since we do not assume that voters have preferences over

committees; we only have approval ballots over candidates.

One way to define manipulability in this context is to extend the

preference information we have to preferences over committees.

This is the approach also typically taken when studying set-valued

(irresolute) voting rules [25, 45] or probabilistic voting rules [11].

In our setting, there are several ways to extend approval ballots to

preferences over committees, and hence several notions of strate-

gyproofness. Our impossibility result uses the weakest notion.

For the formal definitions, let us introduce the notion of i-variants.
For a voter i ∈ N , we say that a profile P ′ is an i-variant of profile P
if P and P ′ differ only in the ballot of voter i , that is, if P(j) = P ′(j)
for all j ∈ N \ {i}. Thus, P ′ is obtained after i manipulated in some

way, assuming that P was the truthful profile.

One obvious way in which one committee can be better than

another in a voter’s view is if the former contains a larger number

of approved candidates. Suppose at the truthful profile, we elect a

committee of size k = 5, of which voter i approves 2 candidates.
If i can submit a non-truthful approval ballots which leads to the

election of a committee with 3 candidates who are approved by i ,
then this manipulation would be successful in the cardinality sense.

Cardinality-Strategyproofness If P ′ is an i-variant of P , then
we do not have | f (P ′) ∩ P(i)| > | f (P) ∩ P(i)|.

One can check that AV with lexicographic tie-breaking satisfies

cardinality-strategyproofness: it is neither advantageous to increase

the approval score of a non-approved candidate, nor to decrease

the approval score of an approved candidate.

Alternatively, we can interpret an approval ballot A ∈ B to

say that the voter likes the candidates in A (and would like them

to in the committee), and that the voter dislikes the candidates

not in A (and would like them not to be in the committee). The

voter’s ‘utility’ derived from committeeW would be the number

of approved candidates inW plus the number of non-approved

candidates not inW . Interpreting approval ballots and committees

as bit strings of length m, the voter thus desires the Hamming
distance between their ballot and the committee to be small. For

two sets A,B, writeH(A,B) = |A ∆ B | = |(A ∪ B) \ (A ∩ B)|.

Hamming-Strategyproofness If P ′ is an i-variant of P , then
we do not haveH(f (P ′), P(i)) < H(f (P), P(i)).

One can check that Hamming-strategyproofness and cardinality-

strategyproofness are equivalent, because for a fixed ballot P(i), a
committee is Hamming-closer to P(i) than another if and only if

the number of approved candidates is higher in the former.

The notions of strategyproofness described so far make sense

if we subscribe to the interpretation of an approval ballot as a di-

chotomous preference, with the voter being completely indifferent

between all approved candidates (or being unable to distinguish be-

tween them). In some settings, this is not a reasonable assumption.

For example, suppose i approves {a,b, c}; still it might be rea-

sonable for i to prefer a committee containing just a to a committee

containing both b and c , maybe because i’s underlying preferences

are such that a is preferred to b and c , even though all three are

EJR

PJR

JR

d’Hondt ext.

lower quota ext.

JR on party lists

proportionality

Figure 1: Proportionality axioms and logical implications.

approved. However, i should definitely prefer a committee that in-

cludes a strict superset of approved candidates. For example, a com-

mittee containinga andb should be better than a committee contain-

ing only a. This is the intuition behind superset-strategyproofness,

which is a weaker notion than cardinality-strategyproofness.

Superset-Strategyproofness If P ′ is an i-variant of P , then we
do not have f (P ′) ∩ P(i) ⊋ f (P) ∩ P(i).

Interestingly, PAV and other proportional rules are often manip-

ulable in a particularly simple fashion: a manipulator can obtain a

better outcome by dropping popular candidates from their approval

ballot. Formally, these rules can be manipulated even through re-

porting a proper subset of the truthful ballot. Our final and official

notion of strategyproofness is a version of subset-strategyproofness

which only requires the committee rule to resist manipulators who

report a subset of the truthful ballot.

Strategyproofness If P ′ is an i-variant of P with P ′(i) ⊂ P(i),
then we do not have f (P ′) ∩ P(i) ⊋ f (P) ∩ P(i).

Manipulating by reporting a subset of one’s truthful ballot is

sometimes known as Hylland free riding [29, 41]: the manipula-

tor free-rides on others approving a candidate, and can pretend

to be worse off than they actually are. This can then induce the

committee rule to add further candidates from their ballot to the

committee. Aziz et al. [2] study a related notion of ‘excludable

strategyproofness’ in the context of probabilistic voting rules.

Interestingly, one can check that PAV cannot be manipulated by

reporting a superset of one’s ballot; such a manoeuvre never helps.

3.2 Proportionality
We now discuss several axioms formalising the notion that the com-

mittee rule f should be proportional, in the sense of proportionally

representing different factions of voters: for example, a ‘cohesive’

group of 10% of the voters should be represented by about 10%

of the members of the committee. The version of proportionality

used in our impossibility is the last axiom we discuss. All other

versions imply the one leading to impossibility; thus, this version

is the weakest notion among the ones discussed here. Figure 1

shows a Hasse diagram of all discussed axioms. Approval Voting

(AV) fails all of them, as can be checked for the example profile

P = (abc,abc,d) and k = 3, where AV returns abc .



We say that a profile P is a party-list profile if for all voters i, j ∈ N ,

either P(i) = P(j), or P(i)∩P(j) = ∅. For example, (ab,ab, cde, cde, f)
is a party-list profile, but (ab, c, c,abc) is not. A party-list profile

induces a partition of the set C of candidates into disjoint parties,
so that each voter approves precisely the members of exactly one

party. The problem of finding a proportional committee given a

party-list profile has been extensively studied as the problem of ap-
portionment. Functions д : {party-list profiles} → Ck are known as

apportionment methods; thus any committee rule induces an appor-

tionment by restricting its domain to party-list profiles [15]. Many

proportional apportionment methods have been introduced and

defended over the last few centuries. Given a committee rule f , one
way to formalise the notion that f is proportional is by requiring

that the apportionment method induced by f is proportional.

Given a party-list profile P , let us write nP (A) = |{i ∈ N : P(i) =
A}| for the number of voters approving party A. An apportionment

method д satisfies lower quota if for every party-list profile P , each

party A in P gets at least ⌊nP (A) ·
k
n ⌋ seats, that is, |д(P) ∩ A| ⩾

⌊nP (A) ·
k
n ⌋. This notion gives us our first proportionality axiom.

Lower quota extension The apportionment method induced

by f satisfies lower quota.

This axiom is satisfied by PAV, the sequential version of PAV, by

Monroe’s rule if k divides n, and Phragmén’s rule [15].

We can strengthen this axiom by imposing stronger conditions

on the induced apportionment method. For example, the apportion-

ment method induced by PAV and by Phragmén’s rule coincides

with the d’Hondt method (aka Jefferson method, see [15] for a defi-

nition), so we could use the following axiom.

d’Hondt extension The apportionment method induced by f
is the d’Hondt method.

Aziz et al. [3] introduce a different approach of defining a propor-

tionality axiom. Instead of considering only the case of party-list

profiles, they impose conditions on all profiles. The intuition behind
their axioms is that sufficiently large groups of voters that have

similar preferences ‘deserve’ at least a certain number of represen-

tatives in the committee. They introduce the following axiom:

Justified Representation (JR) If P is a profile, and N ′ ⊆ N
is a group with |N ′ | ⩾ n

k and

⋂
i ∈N ′ P(i) , ∅, then f (P) ∩⋃

i ∈N ′ P(i) , ∅.

Thus, JR requires that no group of at least
n
k voters for which there

is at least one candidate c ∈ C that they all approve can remain

unrepresented: at least one of the voters in the group must approve

at least one of the committee members. This axiom is satisfied, for

example, by PAV, Phragmén’s rule, and Chamberlin-Courant [3],

but not by the sequential version of PAV unless k ⩽ 5 [3, 39].

Onemay think that JR is tooweak: even if there is a largemajority

of voters who all report the same approval set, JR only requires that

one of their candidates be amember of the committee. But this group

may deserve several representatives. The following strengthened

version of JR is due to [39]. It requires that a large group of voters

for which there are several candidates that they all approve should

be represented by several committee members.

Proportional Justified Representation (PJR) For any profile

P and each ℓ = 1, . . . ,k , ifN ′ ⊆ N is a group with |N ′ | ⩾ ℓ · nk
and |

⋂
i ∈N ′ P(i)| ⩾ ℓ, then | f (P) ∩

⋃
i ∈N ′ P(i)| ⩾ ℓ.

This axiom is also satisfied by PAV and Phragmén’s rule [14, 39].

Brill et al. [15] show that if a rule satisfies PJR, then it is also a lower

quota extension. A yet stronger version of JR is EJR, introduced by

Aziz et al. [3]; EJR requires that there is at least one group member

who has at least ℓ approved committee members.

Extended Justified Representation (EJR) For any profile P
and each ℓ = 1, . . . ,k , if N ′ ⊆ N is a group with |N ′ | ⩾ ℓ · nk
and |

⋂
i ∈N ′ P(i)| ⩾ ℓ, then | f (P) ∩ P(i)| ⩾ ℓ for some i ∈ N ′.

This axiom is satisfied by PAV [3], but not by Phragmén’s rule [14].

The proportionality axiom we use in our impossibility combines

features of the JR-style axioms with the apportionment-extension

axioms. Consider the following axiom.

JR on party lists Suppose P is a party-list profile, and some

ballotA ∈ B appears at least
n
k times in P . Then f (P) ∩A , ∅.

This axiom only requires JR to hold for party-list profiles; thus, it

only requires that we represent large-enough groups of voters who

all report the exact same approval ballot [see also 7]. As an example,

this axiom requires that f (ab,ab, cd, cd) ∈ {ac,ad,bc,bd}, because
the ballots ab and cd both appear at least

n
k =

4

2
= 2 times.

Our official proportionality axiom is still weaker, and only re-

quires us to represent singleton parties with large-enough support.

Proportionality Suppose P is a party-list profile, and some

singleton ballot {c} ∈ B appears at least
n
k times in P . Then

c ∈ f (P).

This axiom should be almost uncontroversial if we desire our com-

mittee rule to be proportional in any sense. A group of voters who

all approve just a single candidate is certainly cohesive (there are

no internal disagreements), it is clear what it means to represent

this group (add their approved candidate to the committee), and

the group is uniquely identified (because no outside voters approve

sets that intersect with the group’s approval ballot).

Since our proportionality axiom only refers to the apportionment

method induced by f , our impossibility states that no reasonable

apportionment method admits an extension to the ‘open list’ setting

(where voters are not bound to a party) which is strategyproof.

A type of axiom related to proportionality are diversity require-

ments. These typically require that as many voters as possible

should have a representative in the committee, but they do not

insist that groups of voters be proportionally represented [18, 23].

The Chamberlin–Courant rule [16] is an example of a rule select-

ing diverse committees. Lackner and Skowron [33] propose the

following formulation of this requirement for the approval setting:

Disjoint Diversity Suppose P is a party-list profilewith atmost

k different parties. Then f (P) contains at least one member

from each party.

Our main result (Theorem 5.1) also holds when replacing propor-

tionality by disjoint diversity, since all profiles in its proof where

proportionality is invoked feature at most k different parties.

3.3 Efficiency
We will additionally impose a mild technical condition, which can

be seen as an efficiency axiom.The axiom will only be used in one

of the induction steps (Lemma 5.5).

Weak Efficiency If P is a profile with |
⋃
i ∈N P(i)| ⩾ k , and c

is a candidate who is approved by no voters, then c < f (P).



Thus, a rule satisfying weak efficiency should fill the committee

with candidates who are approved by some voters, rather than

electing candidates approved by no one. A similar axiom of the

same name is used by Lackner and Skowron [33]. As we declared in

Section 2, in our proofs wewill always restrict attention to profiles P
with |

⋃
i ∈N P(i)| ⩾ k , so that weak efficiency applies to all relevant

profiles.

4 THE COMPUTER-AIDED APPROACH
To obtain our impossibility result, we have used the computer-aided

technique developed by Tang and Lin [44] and Geist and Endriss

[26]. This approach is based on using a computer search (usually

in form of a SAT solver) to establish the base case of an impossi-

bility theorem, and then using (manually proved) induction steps

to extend the theorem to bigger values of n andm. Tang and Lin

[44] used this technique to give proofs of Arrow’s and other classic

impossibility theorems in social choice, and Geist and Endriss [26]

used it to find new impossibilities in the area of set extensions.

A paper by Brandt and Geist [12] used this approach to prove an

impossibility about strategyproof tournament solutions; an impor-

tant technical contribution of their paper was the use of minimal
unsatisfiable sets to produce human-readable proofs of the base

case. This technology was also used to prove new impossibilities

about the no-show paradox [13], about half-way monotonicity [38],

and about probabilistic voting rules [10]. A recent book chapter by

Geist and Peters [27] provides a survey of these results.

The “base case” of an impossibility theorem proves that no voting

rule exists satisfying a certain collection of axioms for a fixed num-

ber of voters and alternatives, and (in our case) a fixed committee

size k . Fixing these numbers, there are only finitely many possible

rules, and we can in principle iterate through all

(m
k
)
2
mn

possibilities

and check whether any satisfies our axioms. However, this search

space quickly grows out of reach of a naïve search.

In many cases, we can specify our axiomatic requirements in

propositional logic, and use a SAT solver to check for the existence

of a suitable voting rule. Due to recent dramatic improvements in

solving times of SAT solvers, this approach often makes this search

feasible, even for moderately large values of n andm [13].

How can we encode our problem of finding a proportional and

strategyproof committee rule into propositional logic? This turns

out to be straightforward. Our formula will be specified so that

every satisfying assignment explicitly encodes a committee rule sat-

isfying the axioms. We generate a list of all (2m )n possible approval

profiles, and for each profile P and each committeeW , we introduce

a propositional variable xP ,W with the intended interpretation that

xP ,W is true ⇐⇒ f (P) =W .

We then add clauses that ensure that any satisfying assignment

encodes a function (so that f (P) takes exactly one value), we add

clauses that ensure that only proportional committees may be re-

turned, and we iterate through all profiles P and all i-variants of
it, adding clauses to ensure that no successful manipulations are

possible. The details are shown in Algorithm 1; the formulation

we use is slightly more efficient by never introducing the variable

xP ,W in case that the committeeW is not proportional in profile P .
Now, given numbers n,m, and k , Algorithm 1 encodes our prob-

lem, passes the resulting propositional formula to a SAT solver [1, 9]

and reports whether the formula was satisfiable. If it is satisfiable,

then we know that there exists a propotional and strategyproof

committee rule for these parameter values, and the SAT solver will

return an explicit example of such a rule in form of a look-up table.

If the formula is unsatisfiable (like in our case), then we have an

impossibility for these parameter values.

A remaining challenge is to extend this impossibility result to

other parameter values, which is usually done by proving induction
steps; however, this is not always straightforward to do, and in some

cases, impossibilities do not hold for all larger parameter values

[e.g., 38]. In many cases, the induction step on n is most-difficult

to establish. We also run into trouble proving this step, and our

impossibility is only proved for the case where n is a multiple of k .
Another challenge is to find a proof of the obtained impossi-

bility, and preferably one that can easily be checked by a human.

Many SAT solvers can be configured to output a proof trace which

contains all steps used to deduce that the formula is unsatisfiable;

but these proofs can become very large. Recent examples are SAT-

generated proofs of a special case of the Erdős Discrepancy Con-

jecture [32] which takes 13GB, and of a solution to the Boolean

Pythagorean Triples Problem [28] which takes 200TB. Clearly, hu-

mans cannot check the correctness of these proofs.

We use the method introduced by Brandt and Geist [12] via min-

imal unsatisfiable sets (MUS). An MUS of an unsatisfiable proposi-

tional formula in conjunctive normal form is a subset of its clauses

which is already unsatisfiable, but minimally so: removing any fur-

ther clause leaves a satisfiable formula. Thus, every clause in an

MUS corresponds to a ‘proof ingredient’ which cannot be skipped.

MUSes of formulas derived from voting problems like ours are of-

ten very small, only referring to a few dozen profiles. This can be

explained through the ‘local’ nature of the axioms used: propor-

tionality constrains the behaviour of the committee rule at a single

profile, and strategyproofness links the behaviour at two profiles.

MUSes can be found using MUS extractors, which have become

reasonably efficient. We used MUSer2 [8] and MARCO [34]. Once

one finds a small MUS, it can then be manually inspected to under-

stand how the clauses in the MUS fit together. More details of this

process are described in the book chapter by Geist and Peters [27].

5 THE IMPOSSIBILITY THEOREM
We are now in a position to state our main result, that there are no

proportional and strategyproof committee rules.

Theorem 5.1. Supposek ⩾ 3, the numbern of voters is divisible by
k , andm ⩾ k + 1. Then there exists no approval-based committee rule
which satisfies weak efficiency, proportionality and strategyproofness.

The assumption that k ⩾ 3 is critical; we discuss the cases k = 1

and k = 2 separately in Section 5.4. The assumption that n be divisi-

ble by k also appears to be critical; the SAT solver indicates positive

results when n is not a multiple of k . However, we do not know

short descriptions of these rules, and it is possible (likely?) that im-

possibility holds for large n andm. Using stronger proportionality

axioms, the result holds for all sufficiently large n; see Section 5.3.

The proof of this impossibility was found with the help of com-

puters, but it was significantly simplified manually. One convenient



ALGORITHM 1: Encode Problem for SAT Solving

Input: Set C of candidates, set N of voters, committee size k .
Question: Does a proportional and strategyproof committee rule

exist?

for each profile P ∈ BN do
if P is a party-list profile then

allowed[P ] ← {C ∈ Ck : C provides JR to singleton parties}

else
allowed[P ] ← Ck

for each committee C ∈ allowed[P ] do
introduce propositional variable xP ,C

for each profile P ∈ BN do
add clause

∨
C∈allowed[P ] xP ,C

add clauses

∧
C,C′∈allowed[P ](¬xP ,C ∨ ¬xP ,C′ )

for each voter i ∈ N do
for each i-variant P ′ of P with P ′(i) ⊆ P (i) do

for each C ∈ allowed[P ] and C′ ∈ allowed[P ′] do
if C′ ∩ P (i) ⊋ C ∩ P (i) then

add clause (¬xP ,C ∨ ¬xP ′,C′ )
pass formula to SAT solver

return whether formula is satisfiable

first step is to establish the following simple lemma. It uses strate-

gyproofness to extend the applicability of proportionality to certain

profiles that are not party-list profiles.

Lemma 5.2. Letm = k+1. Let f be strategyproof and proportional.
Suppose that P is a profile in which some singleton ballot {c} appears
at least nk times, but in which no other voter approves c . Then c ∈ f (P).

Proof. Let P ′ be the profile defined by

P ′(i) =

{
{c} if P(i) = {c},

C \ {c} otherwise.

Then P ′ is a party-list profile, and by proportionality, c ∈ f (P ′).
Thus, f (P ′) , C \ {c}. Now, step by step, we let each non-{c} voter
j in P ′ change back their vote to P(j). By strategyproofness, at each

step the output committee cannot be C \ {c}. In particular, at the

last step, we have f (P) , C \ {c}. Thus, c ∈ f (P), as required. □

5.1 Base case
The first major step in the proof is to establish the impossibility in

the case that k = 3, n = 3, andm = 4. The proof of this base case is

by contradiction, assuming there exists some f satisfying the ax-

ioms. We start by considering the profile P1 = (ab, c,d), and break

some symmetries. (This is a useful strategy to obtain smaller and

better-behaved MUSes.) Using proportionality, symmetry-breaking

allows us to assume that f (P1) = acd . The proof then goes through

seven steps, applying the same reasoning each time. In each step,

we use strategyproofness to infer the values of f at certain pro-

files P2, . . . , P7. Finally, we find that strategyproofness implies that

f (P1) , acd , which contradicts our initial assumption about f (P1).

Lemma 5.3. There is no committee rule that satisfies proportional-
ity and strategyproofness for k = 3, n = 3, andm = 4.

Proof. Suppose for a contradiction that such a committee rule f
existed. Consider the profile P1 = (ab, c,d). By proportionality, we

have c ∈ f (P1) and d ∈ f (P1). Thus, we have f (P1) ∈ {acd,bcd}.

By relabelling the alternatives, we may assume without loss of

generality that f (P1) = acd .
Consider P1.5 = (ab,ac,d). By Lemma 5.2, d ∈ f (P1.5). Thus,

f (P1.5) = acd , or else voter 2 can manipulate towards P1.
Consider P2 = (b,ac,d). By proportionality, f (P2) ∈ {abd,bcd}.

If we had f (P2) = abd , then voter 1 in P1.5 could manipulate to-

wards P2. Hence f (P2) = bcd .
Consider P2.5 = (b,ac, cd). By Lemma 5.2, b ∈ f (P2.5). Thus,

f (P2.5) = bcd , or else voter 3 can manipulate towards P2.
Consider P3 = (b,a, cd). By proportionality, f (P3) ∈ {abc,abd}.

If we had f (P3) = abc , then voter 2 in P2.5 couldmanipulate towards

P3. Hence f (P3) = abd .
Consider P3.5 = (b,ad, cd). By Lemma 5.2, b ∈ f (P3.5). Thus,

f (P3.5) = abd , or else voter 2 can manipulate towards P3.
Consider P4 = (b,ad, c). By proportionality, f (P4) ∈ {abc,bcd}.

If we had f (P4) = bcd , then voter 3 in P3.5 couldmanipulate towards

P4. Hence f (P4) = abc .
Consider P4.5 = (b,ad,ac). By Lemma 5.2, b ∈ f (P4.5). Thus,

f (P4.5) = abc , or else voter 3 can manipulate towards P4.
Consider P5 = (b,d,ac). By proportionality, f (P5) ∈ {abd,bcd}.

If we had f (P5) = abd , then voter 2 in P4.5 could manipulate to-

wards P5. Hence f (P5) = bcd .
Consider P5.5 = (b, cd,ac). By Lemma 5.2, b ∈ f (P5.5). Thus,

f (P5.5) = bcd , or else voter 2 can manipulate towards P5.
Consider P6 = (b, cd,a). By proportionality, f (P6) ∈ {abc,abd}.

If we had f (P6) = abc , then voter 3 in P5.5 couldmanipulate towards

P6. Hence f (P6) = abd .
Consider P6.5 = (b, cd,ad). By Lemma 5.2, b ∈ f (P6.5). Thus,

f (P6.5) = abd , or else voter 3 can manipulate towards P6.
Consider P7 = (b, c,ad). By proportionality, f (P7) ∈ {abc,bcd}.

If we had f (P7) = bcd , then voter 2 in P6.5 couldmanipulate towards

P7. Hence f (P7) = abc .
Finally, consider P7.5 = (ab, c,ad). By Lemma 5.2, c ∈ f (P7.5).

Thus, f (P7.5) = abc , or else voter 1 can manipulate towards P7. But
then voter 3 can manipulate towards P1 = (ab, c,d), because by our

initial assumption, we have f (P1) = acd . Contradiction. □

5.2 Induction steps
We now extend the base case to larger parameter values, by proving

induction steps. The proofs all take the same form: Assuming the

existence of a committee rule satisfying the axioms for large param-

eter values, we construct a rule for smaller values, and show that the

smaller rule inherits the axiomatic properties of the larger rule. This

is done, variously, by introducing dummy voters, by introducing

dummy alternatives, and by copying voters.

Our first induction step reduces the number of voters. The un-

derlying construction works by copying voters, and using the ‘ho-

mogeneity’ of the axioms of proportionality and strategyproofness.

For the latter axiom, we use the fact that in the casem = k + 1, the
preference extension of approval ballots to committees is complete,
in that any two committees are comparable.

Lemma 5.4. Suppose k ⩾ 2 andm = k + 1, and let q ⩾ 1 be an
integer. If there exists a proportional and strategyproof committee rule
for q · k voters, then there also exists such a rule for k voters.



Proof. For convenience, wewrite profiles as lists. Given a profile

P , we write qP for the profile obtained by concatenating q copies

of P . Let fqk be the rule for q · k voters. We define the rule fk for k
voters as follows:

fk (P) = fqk (qP) for all profiles P ∈ Bk .

Proportionality. Suppose P ∈ Bk is a party-list profile in which at

least
n
k =

k
k = 1 voters approve {c}. Then qP is a party-list profile

in which at least q · nk =
qn
k = q voters approve {c}. Since fqk is

proportional, c ∈ fqk (qP) = fk (P).
Strategyproofness. Suppose for a contradiction that fk is not

strategyproof, so that there is P and an i-variant P ′ with fk (P
′) ∩

P(i) ⊋ fk (P) ∩ P(i). Becausem = k + 1, the committees fk (P
′) and

fk (P)must differ in exactly 1 candidate. Since the manipulation was

successful, fk (P
′) must be obtained by replacing a non-approved

candidate in fk (P) by an approved one, say fk (P
′) = fk (P)∪{c}\{d}

with c ∈ P(i) = d . Now consider fqk (qP), and step-by-step let each

of the q copies of P(i) in qP manipulate from P(i) to P ′(i) obtaining
qP ′ in the last step. Because fqk is strategyproof, at each step of

this process fqk cannot have exchanged a non-approved candidate

by an approved candidate according to P(i). This contradicts that
fk (P

′) = fk (P) ∪ {c} \ {d}. □

Our second induction step is the simplest: We reduce the number

of alternatives using dummy candidates that no voter ever approves.

This is the only place in the proof where we require the weak

efficiency axiom.

Lemma 5.5. Fix n and k , and letm ⩾ k . If there exists a weakly
efficient, proportional, and strategyproof committee rule form + 1

alternatives, then there also exists such a rule form alternatives.

Proof. Let fm+1 be the committee rule defined on the candi-

date set Cm+1 = {c1, . . . , cm, cm+1}. Note that every profile P over

candidate setCm = {c1, . . . , cm } is also a profile over candidate set

Cm+1. We then just define the committee rule fm for the candidate

set Cm by fm (P) := fm+1(P) for all profiles P over candidate set

Cm , where we assume that |
⋃
i ∈N P(i)| ⩾ k . By weak efficiency,

fm (P) ⊆ Cm , so that fm is a well-defined rule. It is easy to check

that fm is weakly efficient, proportional, and strategyproof. It is

easy to check that fm is proportional and strategyproof. □

Our last induction step reduces the committee size from k + 1
to k . The construction introduces an additional candidate and an

additional voter, and appeals to Lemma 5.2 to show that the new

candidate is always part of the winning committee. Thus, the larger

rule implicitly contains a committee rule for size-k committees.

Lemma 5.6. Let k ⩾ 2. If there exists a proportional and strate-
gyproof committee rule for committee size k + 1, for k + 1 voters, and
for k + 2 alternatives, then there also exists such a rule for committee
size k , for k voters, and for k + 1 alternatives.

Proof. Let fk+1 be the committee rule assumed to exist, defined

on the candidate set Ck+2 = {c1, . . . , ck+2}. We define the rule fk
for committee size k on candidate set Ck+1 = {c1, . . . , ck+1} as
follows:

fk (A1, . . . ,Ak ) = fk+1(A1, . . . ,Ak , {ck+2}) \ {ck+2},

for every profile P = (A1, . . . ,Ak ) over Ck+1. Notice that this is
well-defined and returns a committee of size k , since by Lemma 5.2

applied to fk+1, we always have ck+2 ∈ fk+1(A1, . . . ,Ak , {ck+2}).
Proportionality. Let P = (A1, . . . ,Ak ) be a party-list profile over

Ck+1, in which the ballot {c} occurs at least n
k =

k
k = 1 time. Then

P ′ = (A1, . . . ,Ak , {ck+2}) is a party-list profile, in which {c} occurs

at least
n+1
k+1 =

k+1
k+1 = 1 time; thus, by proportionality of fk+1, we

have c ∈ fk+1(P
′) = fk (P).

Strategyproofness. If there is a successful manipulation from P to

P ′ for fk , then there is a successful manipulation from (P, {ck+2})
to (P ′, {ck+2}) for fk+1, contradiction. □

Finally, we can combine all three induction steps, applying them

in order, and the base case, to get our main result.

Proof of the Main Theorem. Let k ⩾ 3, letn be divisible by k ,
and letm ⩾ k + 1. Suppose for a contradiction that there does exist

an approval-based committee rule f which satisfies weak efficiency,

proportionality, and strategyproofness for these parameters.

By Lemma 5.5 applied repeatedly to f , there also exists such a

rule f ′ fork+1 alternatives. By Lemma 5.4 applied to f ′, there exists
a proportional and strategyproof rule f ′′ for k voters. By Lemma 5.6

applied to f ′′, there must exist a proportional and strategyproof

rule for committee size 3, for 3 voters, and for 4 alternatives. But

this contradicts Proposition 5.3. □

5.3 Extension to other electorate sizes
One drawback of Theorem 5.1 is the condition on the number of

voters n. For larger values of k , practical elections are unlikely

to have a number of voters which is exactly a multiple of k . The
impossibility as we have proved it does not rule out that for other

values of n, there does exist a proportional and strategyproof rule.

Indeed, at least for small parameter values, the SAT solver confirms

that this is the case. An important open question is whether, for

fixed k ⩾ 3, the impossibility holds for all sufficiently large n.
In this section, we give one result to this effect, obtained by

strengthening the proportionality axiom. Note that all the axioms

we discussed in Section 3.2 are based on the intuition that a group

of
n
k voters should be represented by one committee member. The

value “
n
k ” is known as the Hare quota. An alternative proposal is the

Droop quota, according to which every group consisting of strictly

more than
n

k+1 voters should be represented by one committee

member. Thus, with Droop quotas, slightly smaller groups already

need to be represented. The strengthened axiom is as follows.

Droop Proportionality Suppose P is any profile, and some

singleton ballot {c} ∈ B appears strictly more than
n

k+1 times

in P . Then c ∈ f (P).

Note that Droop proportionality applies to all profiles and not only

party-list profiles. With this stronger proportionality axiom, we

can show that for fixed k and all sufficiently large n, we have an
incompatibility with strategyproofness.

Proposition 5.7. Let k ⩾ 3, letm ⩾ k + 1, and let n ⩾ k2. Then
there is no approval-based committee rule satisfying weak efficiency,
strategyproofness, and Droop proportionality.



Proof. Suppose such a rule fn exists. By Lemma 5.5 (suitably

reproved to apply to the Droop quota), there also is such a rule for

m = k + 1 alternatives, so we may assume thatm = k + 1.
Write n = q · k + r for some 0 ⩽ r < k and some q ⩾ k .

We will show that there exists a committee rule for q · k voters

which satisfies proportionality (with respect to the Hare quota) and
strategyproofness, which contradicts Theorem 5.1.

Fix r arbitrary ballots B1, . . . ,Br . We define a committee rule

fqk on q · k voters, m alternatives, and for committee size k , as
follows:

fqk (A1, . . . ,Aqk ) = fn (A1, . . . ,Aqk ,B1, . . . ,Br ),

for all profiles P = (A1, . . . ,Aqk ) ∈ B
qk

.

It is clear that fqk inherits strategyproofness from fn : Any suc-

cessful manipulation of fqk is also successful for fn .
We are left to show that fqk satisfies (Hare) proportionality. So

suppose that P = (A1, . . . ,Aqk ) ∈ B
qk

is a party-list profile in

which singleton party {c} is approved by at least
qk
k = q voters.

Note that, because r < k ⩽ q,

n

k + 1
=

qk + r

k + 1
<

qk + q

k + 1
=

q(k + 1)

k + 1
= q,

Thus, in the profile P ′ = (A1, . . . ,Aqk ,B1, . . . ,Br ), there are strictly

more than
n

k+1 voters who approve {c}. Thus, by Droop propor-

tionality, c ∈ fn (P
′) = fqk (P). Thus, fqk is (Hare) proportional. □

Remark. If we want to restrict the Droop proportionality axiom

to only apply to party-list profiles, we can instead assume in Propo-

sition 5.7 that m ⩾ k + 2, and then let B1 = · · · = Br = {ck+2},
defining the rule fqk only over the first k + 1 alternatives. Then the

final profile P ′ is a party-list profile.

5.4 Small committees
Theorem 5.1 only applies to the case where k ⩾ 3. For the case

k = 1, where we elect just a single winner, Approval Voting with

lexicographic tie-breaking is both proportional and strategyproof.
3

This leaves open the case of k = 2.

The SAT solver indicates that the statement of Theorem 5.1

does not hold for k = 2, and that there exists a proportional and

strategyproof rule, at least for small parameter values. However, we

can recover an impossibility by strengthening strategyproofness to

superset-strategyproofness, i.e., by allowing manipulators to report

arbitrary ballots (rather than only subsets of the truthful ballot).

Theorem 5.8. Let k = 2,m ⩾ 4, and let n be even. Then there is
no approval-based committee rule that satisfies weak efficiency, JR
on party lists and superset-strategyproofness.

The proof of this result was also obtained via the computer-

aided method. However, this proof is long and involves many case

distinctions, so we omit the details. The proof begins with the

starting profile P = (ab,ab, cd, cd). By JR on party lists, we have

f (P) ∈ {ac,ad,bc,bd}. By relabeling alternatives, we may assume

that f (P) = ac . The proof then applies strategyproofness to deduce

the values of f at other profiles, and arrives at a contradiction.

Theorem 5.8 requires an even number of voters. This is necessary,

since for k = 2 and odd numbers of voters, AV satisfies both axioms.

3
It is well-known that AV is strategyproof. Proportionality for k = 1 is equivalent to a

unanimity condition, since
n
k = n, and AV satisfies unanimity.

Proposition 5.9. For k = 2, anym ⩾ 3, and n odd, AV satisfies
proportionality (it even satisfies JR) and is cardinality-strategyproof.

Proof. AV is cardinality-strategyproof. Aziz et al. [3, Thm. 3]

showed that for k = 2 and odd n, AV satisfies JR. For completeness,

we repeat their argument here. Let P be a profile. Suppose there

is some group N ′ ⊆ N with |N ′ | ⩾ n
k with c ∈ P(i) for all i ∈ N ′.

Note that |N ′ | ⩾ n
k implies |N ′ | > n

2
, so that c has approval score

> n
2
. Then the highest approval score is also > n

2
, and so there is

some d ∈ AV(P) with approval score > n
2
. Thus, a strict majority

of voters approve d . Since strict majorities intersect, there must

be a voter i ∈ N ′ who approves d . Thus d ∈ AV(P) ∩
⋃
i ∈N ′ P(i),

whence the latter set is non-empty, and JR is satisfied. □

6 RELATEDWORK
The closest work to ours is a short article by Duddy [17], who

also proves an impossibility about approval-based committee rules

involving a proportionality axiom. Duddy’s result is about proba-
bilistic committee rules, which return probability distributions over

the set of committees. Because any deterministic committee rule

induces a probabilistic one (which puts probability 1 on the deter-

ministic output), Duddy’s probabilistic result also has implications

for deterministic rules, which we can state as follows.

Theorem 6.1 (Duddy [17]). Form = 3 and k = 2, no approval-
based committee rule f satisfies the following three axioms.

(1) (Representative.) There exists a profile P in which n voters
approve {x} and n+1 voters approve {y, z}, but f (P) , {y, z},
for some n ∈ N and all distinct x,y, z ∈ C .

(2) (Pareto-consistent.) If in profile P , the set of voters who approve
of x is a strict subset of the set of voters who approve of y, then
f (P) , {x, z}, for all distinct x,y, z ∈ C .

(3) (Strategyproof.) Suppose profiles P and P ′ are identical, except
that voter i approves {x,y} in P but {x} in P ′. If f (P) , {x,y},
then also f (P ′) , {x,y}.

HowdoesDuddy’s theorem relate to ours? Duddy’s strategyproof-

ness is weaker than but very similar to our strategyproofness. Our

result does not require an efficiency axiom. Duddy’s representative

axiom is noticeably different from the proportionality axioms that

we have discussed. Logically it is incomparable to our proportion-

ality axiom; in spirit it may be slightly stronger. Note that not even

the strongest of the proportionality axioms that we have discussed

(i.e., EJR) imply Duddy’s representativeness. It is also worth noting

that Duddy’s result works for smaller values ofm and k than our

result, suggesting that Duddy’s axioms are stronger overall.

In computational social choice, there has been much recent in-

terest in axiomatic questions in committee rules. Working in the

context of strict orders, Elkind et al. [18] introduced several axioms

and studied which committee rules satisfy them. Skowron et al.

[43] axiomatically characterise the class of committee scoring rules,
and Faliszewski et al. [22] study the finer structure of this class. For

the approval-based setting, Lackner and Skowron [33] characterise

committee counting rules, and give characterisations of PAV and of

Chamberlin–Courant. They also have a result suggesting that AV

is the only consistent committee rule which is strategyproof.

From a computational complexity perspective, there have been

several papers studying the complexity of manipulative attacks on



multiwinner elections [4, 6, 24, 35, 37]. Other work has studied the

complexity of evaluating various committee rules. Notably, it is

NP-complete to find a winning committee for PAV [4, 42].

7 CONCLUSIONS AND FUTUREWORK
We have proved an impossibility about approval-based committee

rules. The versions of the proportionality and strategyproofness

axioms we used are very weak. It seems unlikely that, by weakening

the axioms used, one can find a committee rule that exhibits satis-

fying versions of these requirements. A technical question which

remains open is whether our impossibility holds for all numbers n
of voters, no matter whether it is a multiple of k (see Section 5.3). It

would also be interesting to study irresolute or probabilistic rules.

To circumvent the classic impossibilities of Arrow and Gibbard–

Satterthwaite, it has proved very successful to study restricted

domains such as single-peaked preferences, which can often give

rise to strategyproof voting rules [20, 36]. Elkind and Lackner [19]

propose analogues of single-peaked and single-crossing preferences

for the case of approval ballots and dichotomous preferences. For

example, a profile of approval ballots satisfies the Candidate Interval

(CI) condition if there exists an underlying linear ordering of the

candidates such that each voter approves an interval of candidates
[see also 21]. Restricting the domain to CI profiles in our SAT

encoding suggests that an impossibility of the type we have studied

cannot be proven for this domain – at least for small values of n,m,

andk . Finding a proportional committee rule that is notmanipulable

on the CI domain would be an exciting avenue for future work.

It would be interesting to obtain impossibilities using other ax-

ioms. Recently, Sánchez-Fernández and Fisteus [40] found some

incompatibilities between proportionality and monotonicity. Their
version of proportionality (‘perfect representation’), however, is

very strong and possibly undesirable. It would be interesting to see

whether such results hold for weaker versions of their axioms.
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