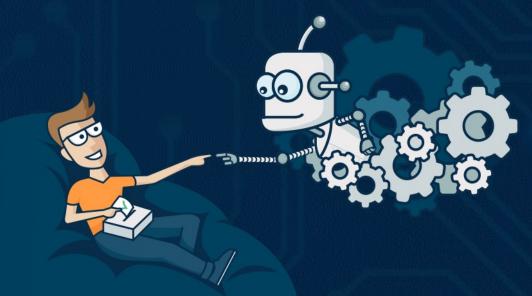
Summer School on Computational Social Choice Computing Desirable Collective Decisions II Distortion in Social Choice & Beyond

Dominik Peters

CNRS, Paris Dauphine dominik@lamsade.fr

Nisarg Shah
University of Toronto
nisarg@cs.toronto.edu



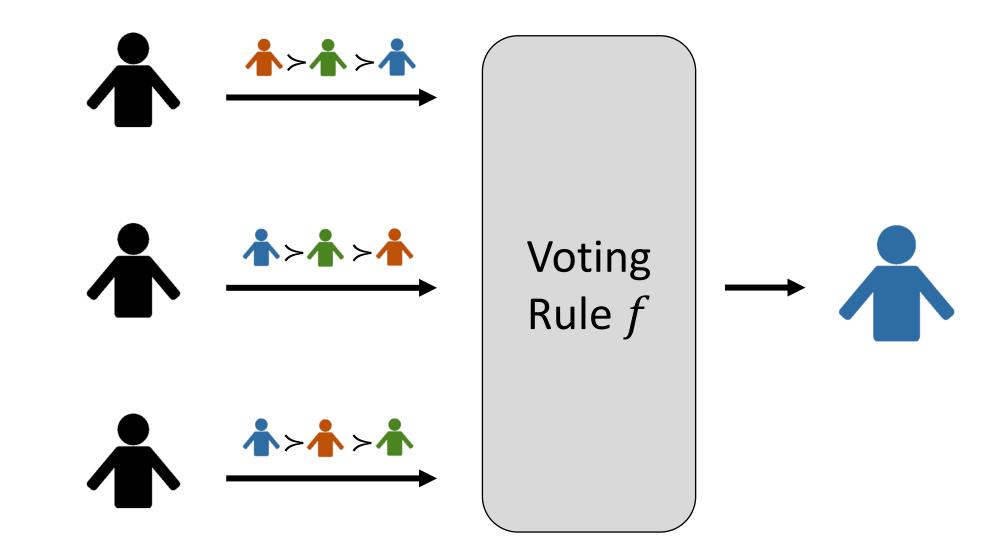
Outline

- Introduction
 - Applications of voting
 - Motivating the distortion framework
- Utilitarian distortion framework
 - Model
 - Known results
- Metric distortion framework
 - Model
 - Known results
- Applications beyond voting

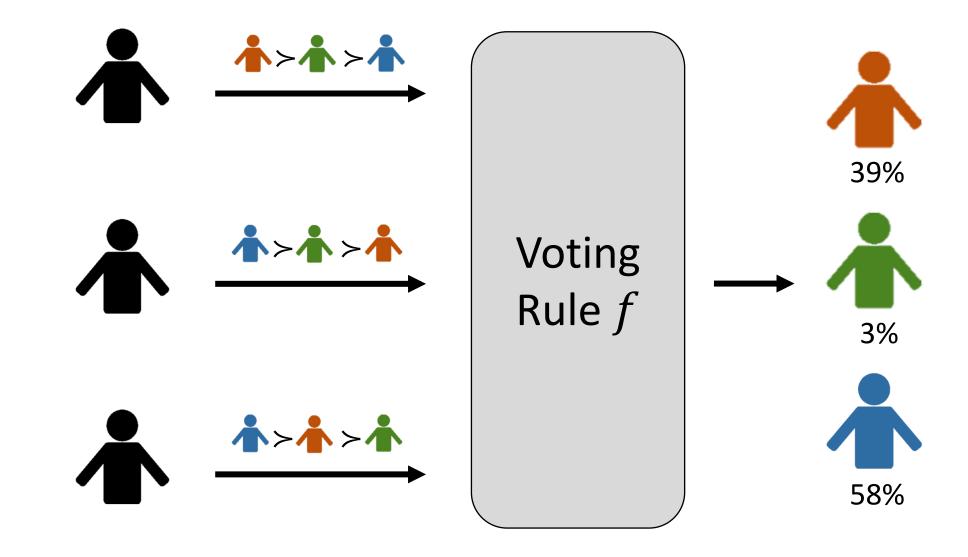
Voting

Algorithm for aggregating individual preferences to make collective decisions

Voting with Ranked Ballots



Randomized Voting with Ranked Ballots



Applications of Randomized Voting

- Interpretation 1: Randomization
 - Probably inappropriate for high-stakes political elections
 - Low stakes decisions like "which restaurant for lunch?"
 - Ensemble-leaning based recommendation engines
- Interpretation 2: Resource division
 - Foundation splitting its budget between grantees
 - Plan a workshop schedule (posters, talks, coffee, lunch, ...)
 - Split a parliament between parties
 - Repeated decisions (seminar weekday, lunch restaurant)

Traditional Analysis: The Axiomatic Method

Condorcet consistency

• Whenever there exists an alternative a such that for every other alternative b a strict majority prefer a to b, the voting rule must select a.

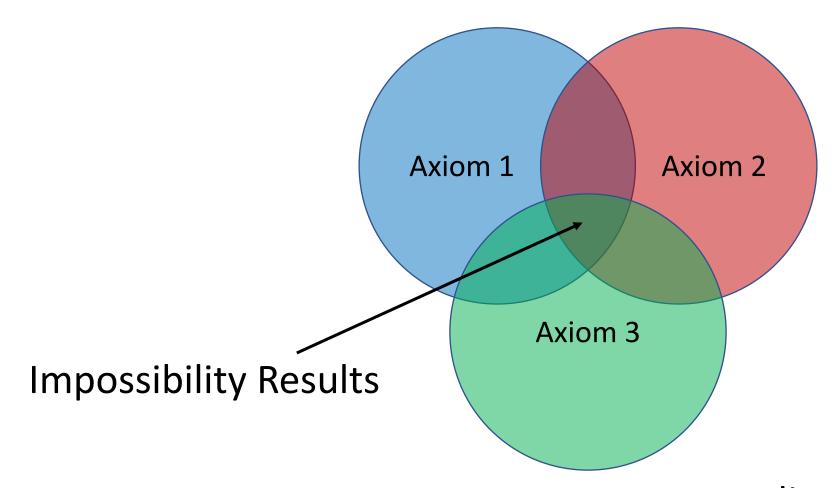
Weak monotonicity

• If the voting rule selects alternative a in an instance and a moves up in the rankings of some of the voters, the voting rule must continue to select a.

Axioms are qualitative

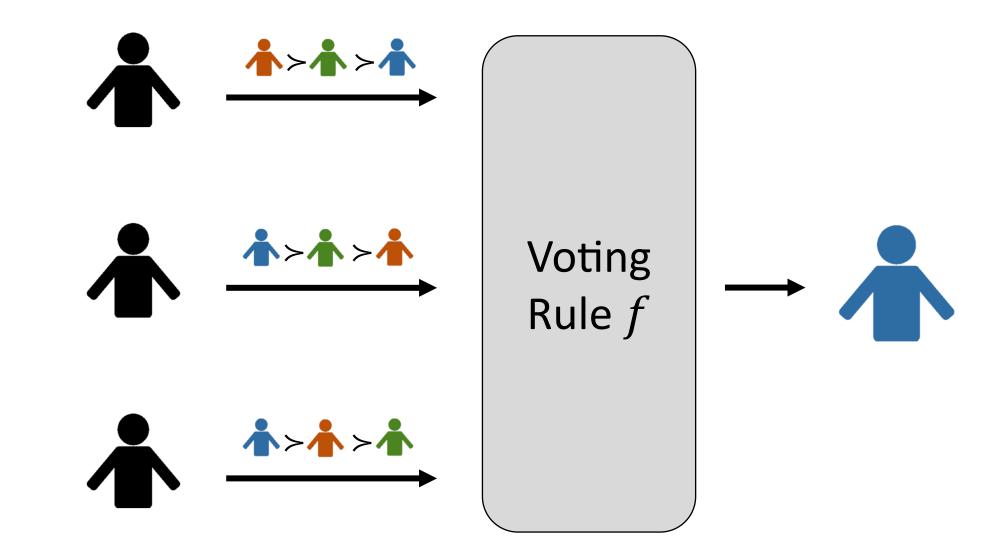
A voting rule either satisfies an axiom or it does not

Axiomatic Method

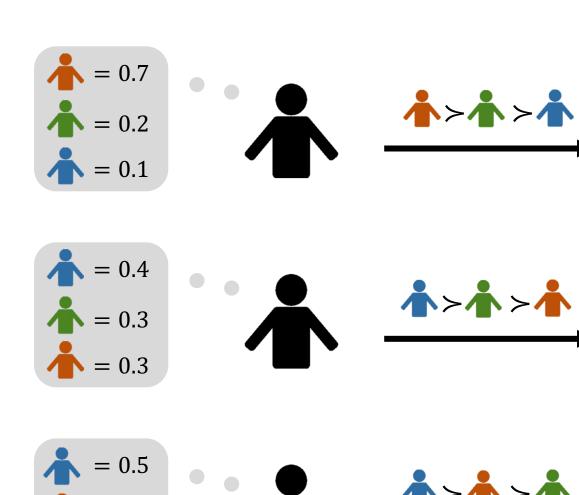


...disagreement about rules

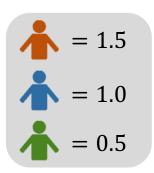
Voting with Ranked Ballots



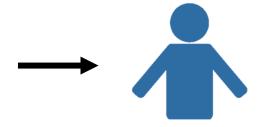
Utilitarian Voting



Utilitarian Social Welfare







No Access to Utilities

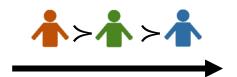
Even if voters have utilities, we may not know them, for many reasons.

- Easier elicition
 - Higher cognitive effort to assign utilities than to rank alternatives
 - It may be costly to figure out utilities (e.g. computation time to simulate consequences)
- Less communication
- Utilities are simply unknown or unknowable
- Privacy

• leads to "implicit utilitarian voting": voting rule only knows the ranking, but gets evaluated on the utilities.

$$= 0.2$$

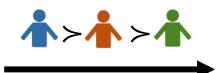
$$= 0.1$$



$$= 0.4$$

$$= 0.3$$

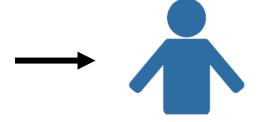
$$= 0.3$$



Utilitarian Social Welfare

$$= 0.5$$

Voting Rule *f*



Apx Ratio (
$$\stackrel{1.5}{ }$$
) = $\frac{1.5}{1.0}$

"could have obtained 1.5x more welfare"

Optimal Voting Rules with Ranked Ballots

Minimize distortion
(Worst-case approximation ratio for utilitarian social welfare)

Outline

- Introduction
 - Applications of voting
 - Motivating the distortion framework
- Utilitarian distortion framework
 - Model
 - Known results
- Metric distortion framework
 - Model
 - Known results
- Applications beyond voting

Voting with Ranked Ballots

- N = set of n voters
- A = set of m alternatives
 - $\Delta(A)$ = set of distributions over A
- \Rightarrow = observed ranked preference profile
 - $>_i$ = preference ranking of voter i
 - $a >_i b$ means the voter ranks a higher than b
- (Randomized) Voting rule *f*
 - Maps every preference profile $\overrightarrow{>}$ to a distribution over alternatives $f(\overrightarrow{>}) = x \in \Delta(A)$
 - We say that f is deterministic if $f(\overrightarrow{>})$ has singleton support for every $\overrightarrow{>}$

Utilitarian Distortion

- 1. There exists an underlying utility profile \vec{u} such that for each $i \in N$:
 - Consistency (denoted $u_i >>_i$): $\forall a,b:a>_i b \Rightarrow u_i(a) \geq u_i(b)$
 - Unit-sum: $u_i(a) \ge 0$, $\sum_a u_i(a) = 1$
 - We'll also consider unit-range: $u_i(a) \ge 0$, $\max_a u_i(a) = 1$
 - Linear extension to distributions: For $x \in \Delta(A)$, $u_i(x) = \sum_a u_i(a) \cdot x(a)$
- 2. If we knew the utilities, we would want to maximize the (utilitarian) social welfare
 - $sw(x, \vec{u}) = \sum_{i \in N} u_i(x)$ [by linearity, this optimum is attained by an alternative]
- 3. Because this is impossible given the limited ranked information, we want to best approximate the social welfare in the worst case.

Utilitarian Distortion

Distortion

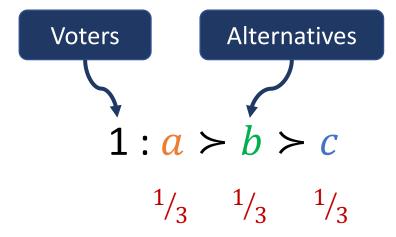
$$\operatorname{dist}(x, \overrightarrow{>}) = \sup_{\overrightarrow{u} \, \triangleright \, \overrightarrow{>}} \frac{\max_{a \in A} sw(a, \overrightarrow{u})}{sw(x, \overrightarrow{u})}$$

Given voting rule f

$$dist(f) = \max_{\overrightarrow{>}} dist(f(\overrightarrow{>}), \overrightarrow{>})$$

What is the lowest possible dist(f)? Which voting rule achieves it?

Example (deterministic)



$$3: a > c > b$$
 $\frac{1}{3}$
 $\frac{1}{3}$
 $\frac{1}{3}$

- Suppose we choose *a*:
 - How much better can b be?

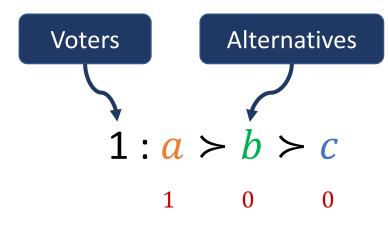
$$\max_{\vec{u} \rhd \vec{>}} \frac{sw(b, \vec{u})}{sw(a, \vec{u})} = \frac{\frac{1}{3} + 1 + \frac{1}{3}}{\frac{1}{3} + 0 + \frac{1}{3}} = \frac{5}{2}$$

• How much better can c be?

$$\max_{\vec{u} \triangleright \vec{>}} \frac{sw(c, \vec{u})}{sw(a, \vec{u})} = \frac{1/_3 + 0 + 1/_3}{1/_3 + 0 + 1/_3} = 1$$

- Hence, $dist(a, \overrightarrow{>}) = \frac{5}{2} = 2.5$
- Similarly, compute $dist(b, \overrightarrow{>}) = 7$ and $dist(c, \overrightarrow{>}) = \infty$
 - a has lower distortion than b and c

Example (randomized)



$$2: b > a > c$$
 $\frac{1}{3}$
 $\frac{1}{3}$
 $\frac{1}{3}$

$$3: a > c > b$$

$$1 \qquad 0 \qquad 0$$

- Among deterministic choices, a is best with distortion 2.5
- With randomization, we can achieve lower distortion.
- On this profile, x = (a: 0.5882, b: 0.4118, c: 0) has distortion 1.54 (best possible).

Utilitarian Distortion

- Instance-optimal rules
 - Deterministic f_{det}^* : Maps every preference profile $\overrightarrow{>}$ to $a^* \in \arg\min_{a \in A} \operatorname{dist}(a, \overrightarrow{>})$
 - Randomized f_{rand}^* : Maps every preference profile $\overrightarrow{>}$ to $x^* \in \arg\min_{x \in \Delta(A)} \operatorname{dist}(x, \overrightarrow{>})$
 - Have the lowest distortion on each \Rightarrow , and therefore in the worst case over all \Rightarrow

Are the instance-optimal rules polytime computable? Do they have a nice analytical structure?

Optimal Deterministic Distortion

- Theorem [Caragiannis, Procaccia, 2011; Caragiannis, Nath, Procaccia, Shah, 2017]
 - For deterministic aggregation of ranked ballots, the optimal distortion is $\Theta(m^2)$ and the instance-optimal rule f_{det}^* is polytime computable.
- Proof (lower bound):
 - High-level approach:
 - Take an arbitrary voting rule f
 - Construct a preference profile ⇒
 - Let f choose a winner a on $\overrightarrow{>}$
 - Reveal a bad utility profile \vec{u} consistent with $\vec{\succ}$ in which a is $\Omega(m^2)$ factor worse than the optimal alternative

Deterministic Rules

- Proof (lower bound):
 - Let f be any deterministic voting rule
 - Consider \Rightarrow on the right
 - Case 1: $f(\overrightarrow{>}) = a_m$
 - Infinite distortion. Why?
 - Case 2: $f(\overrightarrow{>}) = a_i$ for some i < m
 - Bad utility profile \vec{u} consistent with \Rightarrow
 - Voters in column i have utility 1/m for every alternative
 - All other voters have utility 1/2 for their top two alternatives

•
$$\operatorname{sw}(a_i, \vec{u}) = \frac{n}{m-1} \cdot \frac{1}{m}$$
, $\operatorname{sw}(a_m, \vec{u}) \ge \frac{n-n/(m-1)}{2} = \Omega(n)$

• Distortion =
$$\Omega(m^2)$$

n/(m-1) voters per column				
a_1	a_2		a_{m-1}	
a_m	a_m		a_m	
•	•	•	•	

Deterministic Rules

- Proof (upper bound):
 - Plurality rule: Select an alternative a that is the top choice of the most voters
 - For this plurality winner:
 - At least n/m voters have a as their top choice (pigeonhole principle)
 - Every voter has utility at least 1/m for their top choice (pigeonhole principle)
 - Hence, for every consistent utility profile \vec{u} :
 - $sw(a, \vec{u}) \ge n/m^2$
 - $sw(a^*, \vec{u}) \leq n$ for every alternative a^*
 - $dist(a, \overrightarrow{>}) = O(m^2)$

Optimal Randomized Distortion

- Theorem [Boutilier, Caragiannis, Haber, Lu, Procaccia, and Sheffet, 2015]
 - For randomized aggregation of ranked ballots:
 - There is a voting rule with distortion $O(\sqrt{m} \cdot \log^* m)$.
 - Every voting rule has distortion at least $\Omega(\sqrt{m})$.
 - The instance-optimal rule f_{rand}^* is computable in polynomial time.
- Proof (lower bound):
 - Same high-level approach:
 - Take an arbitrary randomized voting rule f
 - Construct a preference profile ⇒
 - Let f choose a distribution x over alternatives
 - Reveal a bad utility profile \vec{u} consistent with $\vec{>}$ in which the expected social welfare under x is $\Omega(\sqrt{m})$ factor worse than the optimal social welfare

Randomized Rules

• Proof (lower bound):

- Let f be an arbitrary rule
- Consider $\overrightarrow{>}$ on the right with \sqrt{m} special alternatives
- f returns distribution x in which at least one special alternative (say a_1) must be chosen with prob. at most $^1/_{\sqrt{m}}$
- Bad utility profile \vec{u} consistent with $\vec{>}$:
 - All voters ranking a_1 first have utility 1 for a_1
 - All other voters have utility 1/m for every alternative
 - $sw(a_1, \vec{u}) = \Theta\left(\frac{n}{\sqrt{m}}\right)$ but $sw(a, \vec{u}) \le \frac{n}{m}$ for every other alternative a

•
$$sw(x, \vec{u}) \le \left(\frac{1}{\sqrt{m}}\right) \cdot \Theta\left(\frac{n}{\sqrt{m}}\right) + \left(1 - \frac{1}{\sqrt{m}}\right) \cdot \left(\frac{n}{m}\right) = O(\frac{n}{m})$$

• Hence,
$$dist(x, \vec{u}) = \Omega(\sqrt{m})$$

$^{n}/_{\sqrt{m}}$ voters per column				
a_1	a_2		$a_{\sqrt{m}}$	
:	•	:	:	

Optimal Randomized Distortion

Harmonic Rule

- The rule that achieves $O(\sqrt{m} \cdot \log^* m)$ distortion is complicated and artificial (it only makes sense if you want low distortion) and is unlikely to generalize
- [Boutilier et al. 2015] propose a simpler rule that achieves $O(\sqrt{m \cdot \log m})$ distortion

Harmonic Rule

- Each voter i awards 1/r points to her r^{th} ranked alternative for every $r \in \{1, ... m\}$
- Harmonic score of alternative a, denoted $hsc(a, \overrightarrow{>})$, is the total point awarded to a
- With probability $\frac{1}{2}$, choose each $a \in A$ with probability proportional to $hsc(a, \Rightarrow)$
- With probability $\frac{1}{2}$, choose each $a \in A$ uniformly at random
 - Key proof idea:
 - $hsc(a, \overrightarrow{\succ}) \ge sw(a, \overrightarrow{u})$ for every a, while $\sum_a hsc(a, \overrightarrow{\succ}) = O(\log m) \cdot \sum_a sw(a, \overrightarrow{u})$

Optimal Randomized Distortion

- Theorem [Ebadian, Kahng, Peters, Shah, 2022]
 - For randomized aggregation of ranked ballots, the optimal distortion is $\Theta(\sqrt{m})$.
- Proof via three steps:
 - I. Define "stable lotteries"
 - II. Prove the existence (and efficient computation) of stable lotteries via the minimax theorem
 - III. Derive $O(\sqrt{m})$ distortion using stable lotteries

Step I: Define Stable Lotteries

• For a set of alternatives $S = \{ \stackrel{\bullet}{A}, \stackrel{\bullet}{A}, \stackrel{\bullet}{A} \}$ and an alternative $a = \stackrel{\bullet}{A}$

$$V(a,S) = |\{i \in N : a >_i b, \forall b \in S\}| = 2$$

- A set of size k is stable if $V(a,S) \leq n/k$ for every $a \in A$
- Lottery S over sets of size k is stable if $\mathbb{E}_{S \sim S}[V(a,S)] \leq n/k$ for every $a \in A$ maximal lottery

k = 1:

Step II: Prove Stable Lotteries Exist

- Theorem: For every k, a stable lottery over committees of size k exists.
- Proof (skip):

•
$$\min_{S} \max_{a \in A} \mathbb{E}_{S \sim S}[V(a, S)] \leq \min_{S} \max_{x \in \Delta(A)} \mathbb{E}_{S \sim S, a \sim x}[V(a, S)]$$

$$= \max_{x \in \Delta(A)} \min_{S} \mathbb{E}_{S \sim S, a \sim x}[V(a, S)] \leq \frac{n}{k}$$

- For any $x \in \Delta(A)$, consider the lottery S^* , where we sample k alternatives i.i.d. according to x and replace any duplicates with arbitrary other alternatives
- For each voter *i*:

$$\Pr_{S \sim \mathcal{S}^*, a \sim x} [a \succ_i b, \forall b \in S] \le \frac{1}{k+1}$$

• Hence:

$$\mathbb{E}_{S \sim \mathcal{S}^*, a \sim x}[V(a, S)] \le \frac{n}{k+1} < \frac{n}{k} \quad \blacksquare$$

Step III: Proof of $O(\sqrt{m})$ Distortion

Stable Lottery Rule

- With probability ½, find a stable lottery S over sets of size \sqrt{m} , sample $S \sim S$, choose $a \in S$ uniformly at random
- With probability $\frac{1}{2}$, choose $a \in A$ uniformly at random
- Theorem: Stable lottery rule achieves $O(\sqrt{m})$ distortion.
 - Let a^* be an alternative maximizing social welfare
 - For any $S: sw(a^*, \vec{u}) \leq V(a^*, S) + \sum_{b \in S} sw(b, \vec{u})$
 - Taking expectation over $S \sim S$:

$$sw(a^*, \vec{u}) \leq \mathbb{E}_{S \sim S}[V(a^*, S)] + \mathbb{E}_{S \sim S}[\sum_{b \in S} sw(b, \vec{u})]$$

$$\leq 2\sqrt{m} \cdot \left(\frac{1}{2} \cdot \frac{n}{m} + \frac{1}{2} \cdot \mathbb{E}_{S \sim S}\left[\frac{1}{|S|} \cdot \sum_{b \in S} sw(b, \vec{u})\right]\right)$$

$$= 2\sqrt{m} \cdot sw(f(\vec{>}), \vec{u}) \blacksquare$$

Notes

Stable lotteries

- Introduced by [Cheng, Jiang, Munagala, Wang, 2020], who show the existence of a stronger form of stable lotteries which bounds V(S',S) for all $S' \subseteq A$
- Requires a much more intricate proof

Stable committees

- 16-stable committees exist [Jiang, Munagala, Wang, 2020]: $V(a,S) \leq 16 \cdot \frac{n}{k}$ for all $a \in A$
- Factor 16 cannot be improved to any lower than 2
- Open question: Do 2-approximately stable committees exist?

Lower bound

- The lower bound from before is $\frac{\sqrt{m}}{2}$
- Open question: A gap of factor 4 between this lower bound and the $2\sqrt{m}$ upper bound by stable lottery rule

Extensions

- Other utility classes and objective functions
- Incentives
- Ballot formats other than ranked ballots
- Committee selection
- Optimal ballot design
- Participatory budgeting
- Social welfare functions

Other Objective Functions

- Nash social welfare
 - $sw(x, \vec{u}) = \sum_{i \in N} u_i(x)$
 - $nsw(x, \vec{u}) = (\prod_{i \in N} u_i(x))^{1/n}$
 - Provides fairness properties (proportional representation)
 - Nash social welfare is independent of individual scales
 - Any distortion upper bound with respect to unit-sum utilities holds for arbitrary utilities
- Theorem [Ebadian, Kahng, Peters, Shah, 2022]:
 - With respect to the Nash social welfare:
 - The distortion of harmonic rule is $\Theta(\sqrt{m \cdot \log m})$
 - The distortion of stable committee rule (similar to stable lottery rule) is $\Theta(\sqrt{m})$
 - There is a randomized rule with distortion $O(\log m)$

Other Utility Classes

- Unit range utilities:
 - $u_i(a) \in [0,1]$ for all $a \in A$, $\max_a u_i(a) = 1$, $\min_a u_i(a) = 0$
- Theorem [Ebadian, Kahng, Peters, Shah, 2022]:
 - With respect to unit range utilities:
 - The distortion of harmonic rule increases to $O(m^{2/3} \cdot \log^{1/3} m)$
 - The distortion of stable lottery rule remains $O(\sqrt{m})$
 - Every randomized rule has distortion $\Omega(\sqrt{m})$

Incentives

- Strategyproofness
 - A randomized rule is strategyproof if a voter cannot increase her expected utility by misreporting her preference ranking in any instance.
- Theorem [Bhaskar, Dani, Ghosh, 2018]:
 - With respect to unit-sum utilities, the best distortion subject to strategyproofness is $\Theta(\sqrt{m \cdot \log m})$.
 - Upper bound is achieved by harmonic rule, which is strategyproof.
- Theorem [Filos-Ratsikas, Bro Miltersen, 2014; Lee 2019]:
 - With respect to unit-range utilities, the best distortion subject to strategyproofness is $\Theta(m^{2/3})$.
 - Note: This explains why the distortion of harmonic rule, which is strategyproof, increases to $\tilde{O}(m^{2}/_{3})$ for unit-range utilities
 - Harmonic rule achieves near-optimal distortion subject to strategyproofness with respect to both unit-sum and unit-range utilities!

Other Ballot Formats

- Ranked ballots + additional queries (more information than ranked ballots)
 - Value query: What is $u_i(a)$?
 - Comparison query: Is $u_i(a) \ge \alpha \cdot u_i(b)$?
 - We measure the number of queries *per voter*
- Theorem [Amanatidis, Birmpas, Filos-Ratsikas, Voudouris, 2021]:
 - For any k, it is possible to achieve distortion $O(k+1\sqrt{m})$ with $O(k \cdot \log m)$ value queries
 - It is possible to achieve O(1) distortion using $O(\log^2 m)$ comparison queries
 - The best distortion with λ value queries is $\Omega\left(\frac{1}{\lambda+1}\cdot m^{\frac{1}{2(\lambda+1)}}\right)$
 - ...
- Many open questions:
 - E.g., O(1) distortion with $O(\log m)$ value queries?

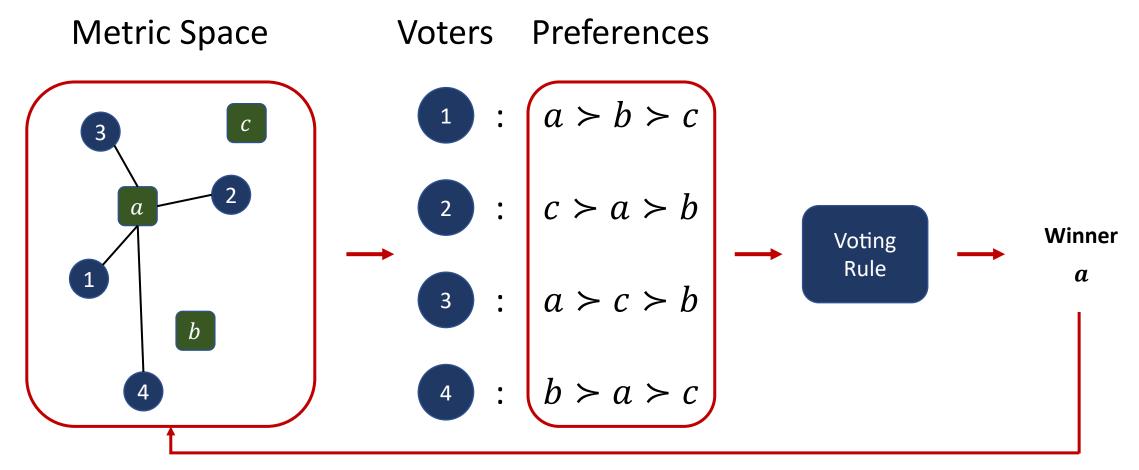
Many, Many Open Questions

- Combining extensions
 - Strategyproofness +
 - Nash welfare distortion, additive distortion, other ballots, committee selection, ...
 - Committee selection or participatory budgeting +
 - Nash welfare distortion, additive distortion, ...
 - Unit-range utilities +
 - Additive distortion, other ballots, committee selection, participatory budgeting, ...
 - Social welfare functions?

• ...

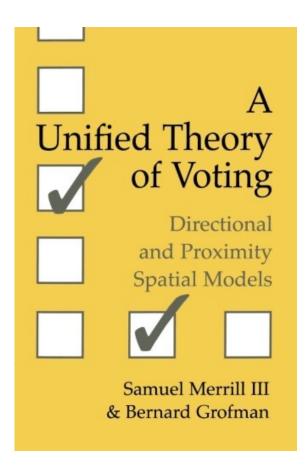
Outline

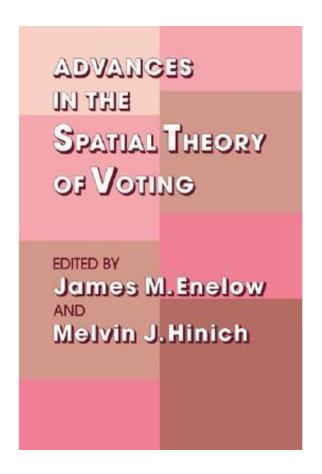
- Introduction
 - Applications of voting
 - Motivating the distortion framework
- Utilitarian distortion framework
 - Model
 - Known results
- Metric distortion framework
 - Model
 - Known results
- Applications beyond voting

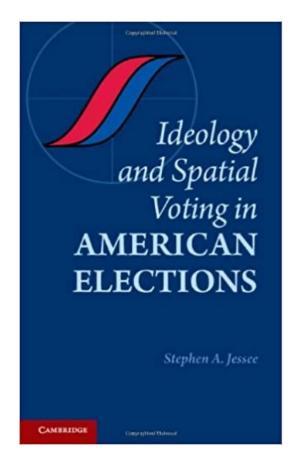


Assess quality using the underlying metric

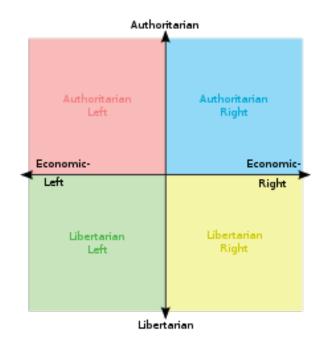
Why The Metric?



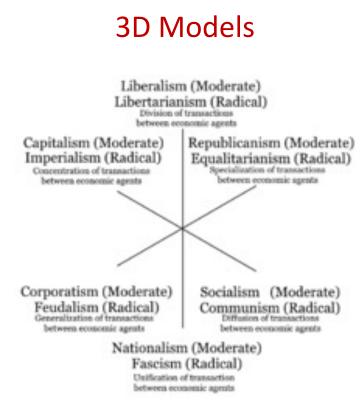


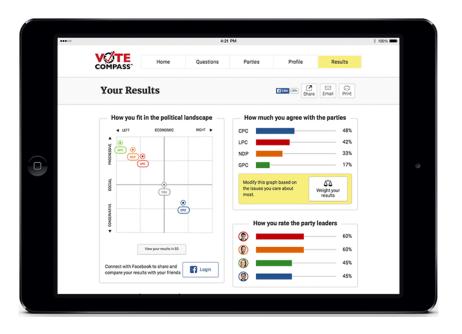


Why The Metric?



2D Models





Popular Tools

Metric Distortion

- 1. There exists an underlying metric d over voters and alternatives such that:
 - Consistency (denoted $d \triangleright \overrightarrow{>}$): $\forall a, b : a \succ_i b \Rightarrow d(i, a) \leq d(i, b)$
 - Triangle inequality: $\forall x, y, z, d(x, y) + d(y, z) \ge d(x, z)$
 - Linear extension to distributions: For $x \in \Delta(A)$, $c_i(x) = d(i,x) = \sum_a d(i,a) \cdot x(a)$
- 2. If we knew the costs, we would minimize the social cost
 - $sc(x,d) = \sum_{i \in N} d(i,x)$
- 3. Because this is impossible given the limited ranked information, we want to best approximate the social cost in the worst case.

Metric Distortion

Distortion

$$\operatorname{dist}(x, \overrightarrow{>}) = \sup_{d > \overrightarrow{>}} \frac{sc(x, d)}{\min_{a \in A} sc(a, d)}$$

Given voting rule f

$$dist(f) = \max_{\overrightarrow{>}} \operatorname{dist}(f(\overrightarrow{>}), \overrightarrow{>})$$

What is the lowest possible distortion of deterministic and randomized rules? Which voting rules achieves it?

• A simple lower bound of 3 (deterministic rules) with just two candidates



$$sc(a,d) = 1\frac{n}{2} + 2\frac{n}{2} = 3\frac{n}{2}$$

 $sc(b,d) = 1\frac{n}{2} + 0\frac{n}{2} = \frac{n}{2}$ distortion $\geq \frac{sc(a,d)}{sc(b,d)} \geq 3$

Deterministic Rules

• Theorem [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]:

Rule	Distortion
k-approval ($k > 2$)	Unbounded
Plurality, Borda count	$\Theta(m)$
Harmonic rule*	$O\left(\frac{m}{\sqrt{\log m}}\right)$, $\Omega\left(\frac{m}{\log m}\right)$
Best positional scoring rule	$\Omega(\sqrt{\log m})$
Instant runoff voting (STV)	$O(\log m)$, $\Omega(\sqrt{\log m})$
Copeland's rule	5
Best deterministic rule	≥ 3

 Open question: What is the best distortion achievable by any positional scoring rule?

The instance-optimal deterministic rule can be computed in polynomial time by solving a number of linear programs.

^{*}Deterministic version of the harmonic rule, which simply picks an alternative with the largest harmonic score

Copeland's Rule

- Lemma [Kempe 2020b]:
 - If $(a_1, a_2, ..., a_\ell)$ is a sequence of alternatives such that a (weak) majority of voters prefer a_i to a_{i+1} for each $i=1,...,\ell-1$, then $sc(a_1,d) \leq (2\ell-1) \cdot sc(a_\ell,d)$ for every metric d consistent with the preference profile.

Corollary:

- It is known that Copeland's winner is in the uncovered set:
 - If a_1 is Copeland's winner, then for every other alternative a, either sequence (a_1, a) or (a_1, a_2, a) for some a_2 satisfies the condition above.
- This explains distortion 5 of Copeland's rule
- Lemma quite powerful, later used by [Anagnostides, Fotakis, Patsilinakos, 2021]

Copeland's rule is Condorcet consistent

• [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]: Any voting rule can be made Condorcet consistent without losing distortion because the Condorcet winner is always a 3-approximation

Deterministic Rules

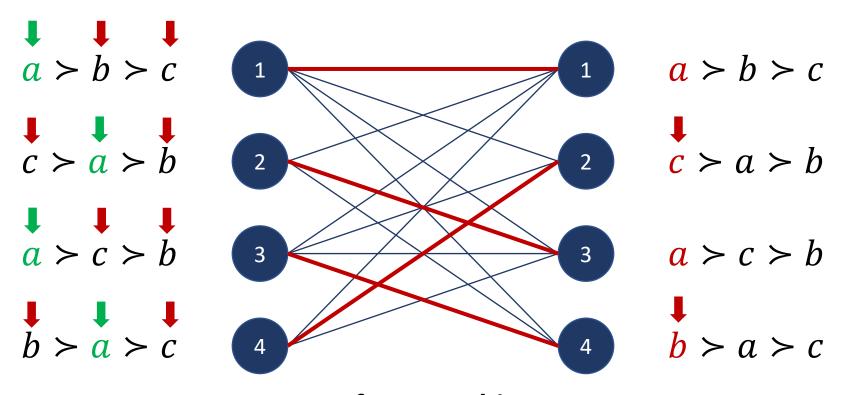
- Theorem [Kempe 2020a]:
 - The distortion of ranked pairs and Schulze's rule is $\Theta(\sqrt{m})$.
 - Analysis via a powerful LP duality approach
- Theorem [Munagala, Wang, 2019]:
 - There exists a deterministic voting rule with distortion $2 + \sqrt{5} \approx 4.236$.
- Theorem [Gkatzelis, Halpern, Shah, 2020]:
 - There exists a deterministic voting rule, PluralityMatching, with distortion 3.
 - Proof by confirming a conjecture by [Munagala, Wang, 2019]
- Theorem [Kizilkaya, Kempe, 2022]:
 - There exists a deterministic voting rule, Plurality Veto, with distortion 3.
 - Proof by confirming a conjecture by [Munagala, Wang, 2019] in a 1-paragraph proof

Domination Graph of Candidate a

Certificate that *a* is a good choice:

we can match each voter j (with top choice x) to another voter i = M(j) with $\alpha \ge_i x$.

Edge (i, j) exists when, in i's vote, a weakly defeats the top choice of j



Perfect Matching

Perfect Matching Gives Distortion 3

- Lemma [Munagala, Wang, 2019; Kempe 2020a]
 - If the domination graph of α has a perfect matching, then α has distortion at most 3.
 - Conjecture: For every profile, at least one candidate's graph has a perfect matching.

• Proof (skip):
$$\operatorname{SC}(a) = \sum_{i \in V} d(i, \operatorname{top}(M(i))) \qquad (\because a \succcurlyeq_i \operatorname{top}(M(i)), \forall i \in V)$$

$$\leq \sum_{i \in V} \left(d(i, b) + d(b, \operatorname{top}(M(i)))\right) \qquad (\because \operatorname{triangle inequality})$$

$$= \sum_{i \in V} \left(d(i, b) + d(b, \operatorname{top}(i))\right) \qquad (\because M \text{ is a perfect matching})$$

$$\leq \sum_{i \in V} \left(d(i, b) + d(b, i) + d(i, \operatorname{top}(i))\right) \qquad (\because \operatorname{triangle inequality})$$

$$\leq \sum_{i \in V} \left(d(i, b) + d(b, i) + d(i, \operatorname{top}(i))\right)$$

$$\leq \sum_{i \in V} \left(d(i, b) + d(b, i) + d(i, \operatorname{top}(i))\right)$$

$$\leq \operatorname{SC}(b).$$

Plurality Veto

- Simple voting rule that selects a candidate with a perfect matching in the domination graph. [Kizilkaya, Kempe, 2022]
 - All alternatives start out being alive. Each voter i gives 1 point to i's top alternative.
 - Go through voters 1-by-1 in an arbitrary order.
 - Each voter i subtracts 1 point from i's least-favorite alive alternative. If that alternative's score drops to 0, it dies.
 - The alternative a surviving until the last round wins.
- Only two queries per voter!
- Note: there are n points in total, and we take n points away.
- In the domination graph of α :
 - For each x, we can match the t voters who rank x top with the t voters who delete a point from x during the execution of the rule.
 - For each such voter, $\alpha \geq_i x$ because α is alive.
- Can make it anonymous and neutral via "eating" / "reverse Phragmén" [Kizilkaya, Kempe, 2022; Peters 2023]

Randomized Rules

- Theorem [Anshelevich, Bhardwaj, Elkind, Postl, Skowron, 2018]:
 - No randomized rule has distortion better than 2.
 - Same example as before
 - Random Dictatorship has distortion $3 \frac{2}{n}$.
- Theorem [Kempe 2020a]:
 - There is a randomized voting rule with access only to top choices with distortion $3 \frac{2}{m}$.
- Theorem [Charikar, Ramakrishnan, 2022; Pulyassary, Swamy, 2021]:
 - No randomized rule has distortion better than 2.1126 for all m.
- Theorem [Charikar, Ramakrishnan, Wang, Wu 2023]:
 - A mixture between maximal lottery and random dictatorship on a subset of alternatives gets 2.753
- Open question: What is the optimal metric distortion of randomized rules?
- Open question: Is the instance-optimal randomized rule polytime computable?

Many, Many Open Questions

- Extensions for metric distortion less-studied than for utilitarian distortion
 - Participatory budgeting?
 - Strategyproofness?
 - Ranked ballots + additional queries?
 - Information-distortion tradeoff? [Kempe 2020a]

• ..

Outline

- Introduction
 - Applications of voting
 - Motivating the distortion framework
- Utilitarian distortion framework
 - Model
 - Known results
- Metric distortion framework
 - Model
 - Known results
- Applications beyond voting

Actually, More Voting First!

Distributed elections

 Voters partitioned into groups that conduct separate elections [Borodin, Lev, Shah, Strangway, 2019; Filos-Ratsikas, Micha, Voudouris, 2020; Filos-Ratsikas, Voudouris, 2021; Anshelevich, Filos-Ratsikas, Voudouris, 2022]

Representative candidates

Alternatives sampled from the pool of voters [Cheng, Dughmi, Kempe, 2017; Cheng, Dughmi, Kempe, 2018]

Voter abstentions

- What if only a fraction of the voters vote? [Borodin, Lev, Shah, Strangway, 2019; Seddighin, Latifian, Ghodsi, 2021; Anagnostides, Fotakis, Patsilinakos, 2021]
- Approval-based cost functions for metric distortion [Pierczynski, Skowron, 2019]

Beyond Voting

- One-Sided Matching
 - Match m agents to m items, where agents have cardinal utilities for the items but only provide ordinal rankings
- Theorem [Filos-Ratsikas, Frederiksen, Zhang, 2014]:
 - The best distortion of any randomized rule is $\Theta(\sqrt{m})$.
- Theorem [Amanatidis, Birmpas, Filos-Ratsikas, Voudouris, 2021]:
 - The best distortion of any deterministic rule is $\Theta(m^2)$.
 - They also analyze the information-distortion tradeoff via queries.
- Surprisingly, identical bounds as single-winner voting!
- Other work [Ma, Menon, Larson, 2021; Bishop, Chan, Mandal, Tran-Thanh, 2022]

Beyond Voting

- Resource allocation
 - Allocate m goods to n agents
 - [Halpern, Shah, 2021]: When every agent ranks the goods
 - [Ebadian, Freeman, Shah, 2022]: When k agents provide no information while the rest provide cardinal utilities
- Secretary problem [Hoefer, Kodric, 2017]
- Graph-theoretic problems
 - Maximum-weight matching [Anshelevich, Sekar, 2016a]
 - Max k-sum, densest k-subgraph, maximum traveling salesman [Anshelevich, Sekar, 2016b]
 - Min-weight and max-min bipartite matching, facility location, k-center, k-median [Filos-Ratsikas, Voudouris, 2021; Anshelevich, Zhu, 2021]

Future Work: Ballot Design

- Common ballot designs
 - Pairwise comparisons, "Do you like candidate a at least twice as much as candidate b?", ...
- Better models of cognitive burden
 - Psychology, HCI, ...
- Voter errors in answering ballots
 - Expressive ballots can also induce errors
- Intangible aspects of ballot design
 - Barcelona PB team: "Knapsack votes are good because they help voters understand the limitations of the budget."

Future Work: Distortion vs Other Desiderata

Distortion & Truthfulness

- With ranked ballots, near-optimal distortion can be achieved via truthful aggregation
- What happens with other ballot formats?

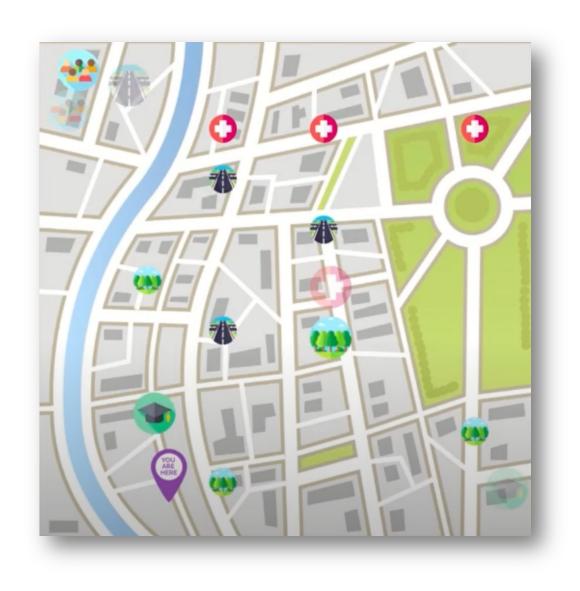
Distortion & Axioms

- Can we achieve low distortion together with popular axioms?
- Especially, proportional representation for committee selection

Distortion & Explainability

Explaining the voting rule vs explaining what it does

Future Work: More Complex Voting Paradigms



- Design optimal voting rules for more complex voting paradigms
 - Participatory budgeting
 - Districting
- Model end-to-end voting
 - In participatory budgeting, voting is but the final step of a year-long process
- Compare models of democracy
 - E.g., direct democracy, representative democracy, and liquid democracy

- Abramowitz, B., Anshelevich, E. and Zhu, W. Awareness of voter passion greatly improves the distortion of metric social choice. WINE, pp. 3-16, 2019.
- Anagnostides, I., Fotakis, D. and Patsilinakos, P. *Metric-distortion bounds under limited information*. SAGT, pp. 299-313, 2021.
- Anshelevich, E., Bhardwaj, O., Elkind, E., Postl, J. and Skowron, P. *Approximating optimal social choice under metric preferences*. AlJ, 264, pp. 27-51, 2018.
- Anshelevich, E., Filos-Ratsikas, A., Shah, N. and Voudouris, A. A. *Distortion in Social Choice Problems: The First 15 Years and Beyond.* IJCAI (Survey Track), pp. 4294-4301, 2021.
- Anshelevich, E., Filos-Ratsikas, A. and Voudouris, A. A. *The distortion of distributed metric social choice*. AlJ, 308, p.103713, 2022.
- Anshelevich, E. and Sekar, S. *Blind, greedy, and random: Algorithms for matching and clustering using only ordinal information*. AAAI, pp. 383-389, 2016a.
- Anshelevich, E. and Sekar, S. *Truthful mechanisms for matching and clustering in an ordinal world.* WINE, pp. 265-278, 2016b.

- Anshelevich, E. and Zhu, W. Ordinal approximation for social choice, matching, and facility location problems given candidate positions. TEAC, 9(2), pp.1-24, 2021.
- Benade, G., Nath, S., Procaccia, A. D. and Shah, N. *Preference elicitation for participatory budgeting*. Management Science, 67(5), pp. 2813-2827, 2021.
- Benade, G., Procaccia, A. D. and Qiao, M. Low-distortion social welfare functions. AAAI, pp. 1788-1795, 2019.
- Bhaskar, U., Dani, V. and Ghosh, A. *Truthful and near-optimal mechanisms for welfare maximization in multi-winner elections*. AAAI, pp. 925-932, 2018.
- Bishop, N., Chan, H., Mandal, D. and Tran-Thanh, L. Sequential Blocked Matching. AAAI, pp. 4834-4842, 2022.
- Borodin, A., Halpern, D., Latifian, M. and Shah, N. Distortion in voting with top-t preferences. IJCAI, 2022 (forthcoming).
- Borodin, A., Lev, O., Shah, N. and Strangway, T. *Primarily about primaries*. AAAI, pp. 1804-1811, 2019.

- Boutilier, C., Caragiannis, I., Haber, S., Lu, T., Procaccia, A. D. and Sheffet, O. *Optimal social choice functions: A utilitarian view.* AlJ, 227, pp. 190-213, 2015.
- Caragiannis, I., Nath, S., Procaccia, A. D. and Shah, N. Subset selection via implicit utilitarian voting. JAIR, 58, pp. 123-152, 2017.
- Caragiannis, I. and Procaccia, A. D. *Voting almost maximizes social welfare despite limited communication*. AlJ, 175(9-10), pp. 1655-1671, 2011.
- Caragiannis, I., Shah, N. and Voudouris, A. A. The metric distortion of multiwinner voting. AAAI, pp. 4900-4907, 2022.
- Charikar, M. and Ramakrishnan, P. *Metric distortion bounds for randomized social choice*. SODA, pp. 2986-3004, 2022.
- Chen, X., Li, M. and Wang, C. Favorite-candidate voting for eliminating the least popular candidate in a metric space. AAAI, pp. 1894-1901, 2020.
- Cheng, Y., Dughmi, S. and Kempe, D. Of the people: voting is more effective with representative candidates. EC, pp. 305-322, 2017.

- Cheng, Y., Dughmi, S. and Kempe, D. *On the distortion of voting with multiple representative candidates*. AAAI, pp. 973-980, 2018.
- Cheng, Y., Jiang, Z., Munagala, K. and Wang, K. *Group fairness in committee selection*. TEAC, 8(4), pp. 1-18, 2020.
- Ebadian, S., Freeman, R. and Shah, N. *Efficient Resource Allocation with Secretive Agents*. IJCAI, 2022 (forthcoming).
- Ebadian, S., Kahng, A., Shah, N. and Peters, D. *Optimized distortion and proportional fairness in voting*. EC, 2022 (forthcoming).
- Fain, B., Fan, W. and Munagala, K. Concentration of distortion: the value of extra voters in randomized social choice. IJCAI, pp. 110-116, 2020.
- Fain, B., Goel, A., Munagala, K. and Prabhu, N. Random dictators with a random referee: Constant sample complexity mechanisms for social choice. AAAI, pp. 1893-1900, 2019.
- Fain, B., Goel, A., Munagala, K. and Sakshuwong, S. *Sequential deliberation for social choice*. WINE, pp. 177-190, 2017.

- Filos-Ratsikas, A. and Miltersen, P. B. *Truthful approximations to range voting*. WINE, pp. 175-188, 2014.
- Filos-Ratsikas, A., Frederiksen, S. K. S. and Zhang, J. *Social welfare in one-sided matchings:* Random priority and beyond. SAGT, pp. 1-12, 2014.
- Filos-Ratsikas, A., Micha, E. and Voudouris, A. A. *The distortion of distributed voting*. AlJ, 286, p. 103343, 2020.
- Filos-Ratsikas, A. and Voudouris, A. A. *Approximate mechanism design for distributed facility location*. SAGT, pp. 49-63, 2021.
- Gkatzelis, V., Halpern, D. and Shah, N. *Resolving the optimal metric distortion conjecture*. FOCS, pp. 1427-1438, 2020.
- Goel, A., Hulett, R. and Krishnaswamy, A. K. *Relating metric distortion and fairness of social choice rules.* NetEcon, pp. 1-1, 2018.
- Gross, S., Anshelevich, E. and Xia, L. *Vote until two of you agree: Mechanisms with small distortion and sample complexity.* AAAI, pp. 544-550, 2017.

- Halpern, D. and Shah, N. Fair and efficient resource allocation with partial information. IJCAI, pp. 224-230, 2021.
- Hoefer, M. and Kodric, B. Combinatorial secretary problems with ordinal information. ICALP, pp. 1-14, 2017.
- Jiang, Z., Munagala, K. and Wang, K. *Approximately stable committee selection*. STOC, pp. 463-472, 2020.
- Kahng, A. and Kehne, G. Worst-case voting when the stakes are high. AAAI, pp. 5100-5107, 2022.
- Kempe, D. Communication, distortion, and randomness in metric voting. AAAI, pp. 2087-2094, 2020a.
- Kempe, D. *An analysis framework for metric voting based on LP duality.* AAAI, pp. 2079-2086, 2020b.
- Kizilkaya, F. E. and Kempe, D., 2022. *Plurality Veto: A Simple Voting Rule Achieving Optimal Metric Distortion*. IJCAI, 2022.
- Lee, S. Maximization of relative social welfare on truthful cardinal voting schemes. arXiv:1904.00538, 2019.

- Ma, T., Menon, V. and Larson, K. *Improving welfare in one-sided matchings using simple threshold queries*. IJCAI, pp. 321-327, 2021.
- Mandal, D., Procaccia, A. D., Shah, N. and Woodruff, D. P. Efficient and thrifty voting by any means necessary. NeurIPS, pp. 7180-7191, 2019.
- Mandal, D., Shah, N. and Woodruff, D. P. *Optimal communication-distortion tradeoff in voting*. EC, pp. 795-813, 2020.
- Munagala, K. and Wang, K. *Improved metric distortion for deterministic social choice rules*. EC, pp. 245-262, 2019.
- Pierczynski, G. and Skowron, P. *Approval-based elections and distortion of voting rules*. IJCAI, pp. 543-549, 2019.
- Procaccia, A. D. and Rosenschein, J. S. *The distortion of cardinal preferences in voting.* CIA, pp. 317-331, 2006.
- Pulyassary, H. and Swamy, C. On the randomized metric distortion conjecture. arXiv:2111.08698, 2021.
- Seddighin, M., Latifian, M. and Ghodsi, M. On the distortion value of elections with abstention.
 JAIR, 70, pp. 567-595, 2021.

Thank you!

Questions?