COMSOC Lecture 2:
 Allocation of Indivisible Items

Dominik Peters

2023-01-18

Allocation of indivisible items

- $N=\{1, \ldots, n\}$ is a set of agents.
- $O=\left\{o_{1}, \ldots, o_{m}\right\}$ is a set of items/objects/goods.
- An allocation is a list $A=\left(A_{1}, \ldots, A_{n}\right)$, where $A_{i} \subseteq O$ is a bundle of items assigned to agent i. Bundles must be pairwise disjoint. We also must have $A_{1} \cup \cdots \cup A_{n}=O$; if this condition is not satisfied, we speak of a partial allocation.
- Each agent i has a valuation function $v_{i}: 2^{O} \rightarrow \mathbb{R}_{\geq 0}$ that is monotonic: $B_{1} \subseteq B_{2} \Longrightarrow v_{i}\left(B_{1}\right) \leq v_{i}\left(B_{2}\right)$. (items are goods)
- A valuation function is additive if $v_{i}(B)=\sum_{o \in B} v_{i}(\{o\})$ for all $B \subseteq O$.
- In this case, we also write $v_{i}(o):=v_{i}(\{o\})$.
- What are some examples of non-additive valuation functions?

Example

Proportionality and envy-freeness

Let A be an allocation.

- A is proportional if $v_{i}\left(A_{i}\right) \geq \frac{1}{n} v_{i}(O)$ for every $i \in N$.
- A is envy-free if $v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)$ for all $i, j \in N$

Question: are there examples where no envy-free allocation exists? no proportional allocation?

Proportionality and envy-freeness

Let A be an allocation.

- A is proportional if $v_{i}\left(A_{i}\right) \geq \frac{1}{n} v_{i}(O)$ for every $i \in N$.
- A is envy-free if $v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)$ for all $i, j \in N$

Question: are there examples where no envy-free allocation exists? no proportional allocation?

Yes. $N=\{1,2\}, O=\left\{o_{1}\right\}, v_{1}\left(o_{1}\right)=v_{2}\left(o_{1}\right)=1$.

- For the allocation $\left(\left\{o_{1}\right\}, \emptyset\right), 2$ envies 1 and doesn't get proportional share.
- For the allocation ($\emptyset,\left\{o_{1}\right\}$), 1 envies 2 and doesn't get proportional share.

Deciding existence

Consider the following decision problem [and variant]:
Existence of proportional [ENVY-Free] allocation

- Input: Additive valuations $\left(v_{i}(o)\right)_{i \in N, o \in O}$.
- Question: Does there exist a (complete) allocation A that is proportional? [that is envy-free?]

This problem is NP-complete.
Obvious reduction from Partition, works even for $n=2$ agents.

- Input: List of numbers $\left(x_{1}, \ldots, x_{m}\right)$
- Question: Does there exist a partition $\left(S_{1}, S_{2}\right)$ of $\{1, \ldots, m\}$ such that $\sum_{i \in S_{1}} x_{i}=\sum_{i \in S_{2}} x_{i}$?

Exercise: This only shows weak NP-hardness (binary encoding of numbers). Show the problem is strongly NP-hard (unrestricted n).

Some allocation rules

- Maximize utilitarian social welfare: Pick an allocation A that maximizes $\sum_{i \in N} v_{i}\left(A_{i}\right)$.
- Maximize egalitarian social welfare: Pick an allocation A that maximizes $\min _{i \in N} v_{i}\left(A_{i}\right)$.
- Maximize Nash social welfare: Pick an allocation A that maximizes $\prod_{i \in N} v_{i}\left(A_{i}\right)$.
- This is the same as maximizing $\sum_{i \in N} \log v_{i}\left(A_{i}\right)$.
- This is scale-free: multiplying the valuations of an agent by any factor does not change the optimal allocation.
- It lies "between" utilitarian and egalitarian social welfare: $\min _{i \in N} v_{i}\left(A_{i}\right) \leq \sqrt[n]{\prod_{i \in N} v_{i}\left(A_{i}\right)} \leq \frac{1}{n} \sum_{i \in N} v_{i}\left(A_{i}\right)$. (AM-GM inequality)
Question: What is the compuational complexity of computing optimal allocations for these objectives?

Example

G
会
8
7
20
5
9
11
12
8
9
10
18
3

Example

Example

Example

Envy-freeness up to 1 good (EF1)

An allocation is envy-free up to 1 good (EF1) if for all $i, j \in N$, either $v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)$ or there is $o \in A_{j}$ with $v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash\{o\}\right)$.

Exercise: Find an EF1 allocation:

Theorem: An EF1 allocation always exists.

Round robin rule

Consider the following procedure:
Repeatedly go through the agents in order (1 23 ...n 12 3 ...n 123 4) and on each agent's turn, let them pick an unpicked good that is most valuable to them.

- Clearly, this is EF1 for agent 1 (in fact, he is envy-free).
- But it is also EF1 for everyone else. Consider for example agent 3. Let him ignore the first item that agent 1 picked, and the first item that agent 2 picked. With these ignored, no envy remains.

Question: what are some other agent orderings that guarantee EF1? what are some that don't?

Question: Does this algorithm work for non-additive valuations?

Envy graph, cycle elimination

Given an allocation A, its envy graph is the directed graph with 1 vertex for each agent, and an arc from i to j if i envies j.

Consider some allocation A. Suppose the envy graph has a cycle 1-2-3-4-5-1, meaning that

$$
\begin{aligned}
& v_{1}\left(A_{1}\right)<v_{1}\left(A_{2}\right) \\
& v_{2}\left(A_{2}\right)<v_{2}\left(A_{3}\right) \\
& v_{3}\left(A_{3}\right)<v_{3}\left(A_{4}\right) \\
& v_{4}\left(A_{4}\right)<v_{4}\left(A_{5}\right) \\
& v_{5}\left(A_{5}\right)<v_{5}\left(A_{1}\right) .
\end{aligned}
$$

Then we can eliminate the cycle by giving A_{2} to A_{1}, A_{3} to A_{2}, etc. The resulting allocation is does not introduce any additional envy edges (and it is a Pareto improvement). If A was EF1, then same is true after.

Envy graph algorithm

1. Start with the empty (partial) allocation A.
2. For each item $o \leftarrow\left[o_{1}, o_{2}, \ldots, o_{m}\right]$, in order:

- Compute the envy graph for A, and update A by eliminating any cycles.
- Now the envy graph has no cycles. Pick an agent i who is a source in the envy graph, i.e. is not envied by anybody.
- Add o to A_{i}.

Theorem: This algorithm always terminates with an EF1 allocation.
Proof: partial allocation is EF1 throughout. Let A be allocation before adding o, B after. Then

$$
v_{j}\left(B_{j}\right)=v_{j}\left(A_{j}\right) \stackrel{i \text { source }}{\geq} v_{j}\left(A_{i}\right)=v_{j}\left(B_{i} \backslash\{0\}\right)
$$

Question: Does this algorithm work for non-additive valuations?

Pareto-optimality

An allocation A is Pareto-optimal if there is no other allocation B such that $v_{i}\left(A_{i}\right) \geq v_{i}\left(B_{i}\right)$ for all $i \in N$ and $v_{i}\left(A_{i}\right)>v_{i}\left(B_{i}\right)$ for some $i \in N$.

Questions: Which rules are Pareto-optimal? Is round robin? Is envy graph?

Pareto-optimality

An allocation A is Pareto-optimal if there is no other allocation B such that $v_{i}\left(A_{i}\right) \geq v_{i}\left(B_{i}\right)$ for all $i \in N$ and $v_{i}\left(A_{i}\right)>v_{i}\left(B_{i}\right)$ for some $i \in N$.

Questions: Which rules are Pareto-optimal? Is round robin? Is envy graph?

Question: Does there always exist a Pareto-optimal EF1 allocation?

Maximizing Nash Welfare is PO and EF1

The MNW (Max Nash Welfare) rule selects an allocation maximizing $\prod_{i \in N} v_{i}\left(A_{i}\right)$.

Clearly, this rule is PO.*
Proved in 2016: it also satisfies EF1.

- Fix any agents $i, j \in N$, and consider moving object $o \in A_{j}$ from A_{j} to A_{i}.
- $v_{i}\left(A_{i} \cup\{o\}\right) \cdot v_{j}\left(A_{j} \backslash\{o\}\right) \leq v_{i}\left(A_{i}\right) \cdot v_{j}\left(A_{j}\right)$.
$\Rightarrow \Rightarrow: 1-v_{j}(o) / v_{j}\left(A_{j}\right) \leq 1-v_{i}(o) /\left(v_{i}\left(A_{i}\right)+v_{i}(o)\right)$.
$\triangleright \Rightarrow: v_{j}(o) / v_{j}\left(A_{j}\right) \geq v_{i}(o) /\left(v_{i}\left(A_{i}\right)+v_{i}\left(o^{*}\right)\right)$ for $o^{*} \in \arg \max _{o^{\prime} \in A_{j}} v_{i}\left(o^{\prime}\right)$.
- Sum over all $o \in A_{j}$.

Maximizing Nash Welfare

- Used on Spliddit
- Can calculate with ILP.
- https://pref.tools/nash-indivisible/
- There is a pseudo-polynomial algorithm achieving PO + EF1 (i.e., polynomial in $n, m, \max _{i, o} v_{i}(o)$).

Is EF1 enough?

	, car	Q balloon	d socks
(2)	100	1	1
- B	100	1	1
	\% car	Q balloon	docks
(2)	100	1	1
- B	100	1	1

Envy-freeness up to any good (EFX)

Definition: An allocation A satisfies EFX if for all $i, j \in N$, and for any good $o \in A_{j}$, we have

$$
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash\{o\}\right)
$$

- Open: Does there always exist an EFX allocation?
- Known: exists for two agents (easy), exists for three agents (very hard)
- Known: exists for identical valuations.
- Method that works for two agents and for identical valuations: leximin
- Maximize the utility of the worst-off agent. Subject to this, maximize the utility of the second-worst-off agent, etc.

Non-additive valuations?

A valuation function $v_{i}: 2^{O} \rightarrow \mathbb{R}$ is submodular if for all $A \subseteq B$ and all $x \in O \backslash B$,

$$
v_{i}(B \cup\{o\})-v_{i}(B) \leq v_{i}(A \cup\{o\})-v_{i}(A)
$$

Example: course allocation.
An EF1 allocation always exists for submodular violation.

- Open: does a PO + EF1 allocation always exist? Nash is not EF1.

What about chores?

A chore for agent i is an item with $v_{i}(o)<0$.
We can define EF1 for mixed instances as follows:
An allocation A is EF1 if for all $i, j \in N$, there is some object $o \in A_{i} \cup A_{j}$ such that

$$
v_{i}\left(A_{i} \backslash\{o\}\right) \geq v_{i}\left(A_{j} \backslash\{o\}\right)
$$

- For 2 agents, can do PO + EF1.
- Can always do EF1 (without PO).
- Open: can we do PO + EF1 for 3+ agents? (open even for instances with only chores)

