COMSOC Lecture 2: Allocation of Indivisible Items

Dominik Peters

2023-01-18

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Allocation of indivisible items

- $N = \{1, \ldots, n\}$ is a set of agents.
- $O = \{o_1, \ldots, o_m\}$ is a set of items/objects/goods.
- An allocation is a list A = (A₁,..., A_n), where A_i ⊆ O is a bundle of items assigned to agent *i*. Bundles must be pairwise disjoint. We also must have A₁ ∪ · · · ∪ A_n = O; if this condition is not satisfied, we speak of a partial allocation.
- Each agent *i* has a valuation function v_i : 2^O → ℝ_{≥0} that is monotonic: B₁ ⊆ B₂ ⇒ v_i(B₁) ≤ v_i(B₂). (items are goods)

A valuation function is additive if v_i(B) = ∑_{o∈B} v_i({o}) for all B ⊆ O.

- In this case, we also write $v_i(o) := v_i(\{o\})$.
- What are some examples of non-additive valuation functions?

Proportionality and envy-freeness

Let A be an allocation.

- A is proportional if $v_i(A_i) \ge \frac{1}{n}v_i(O)$ for every $i \in N$.
- A is envy-free if $v_i(A_i) \ge v_i(A_j)$ for all $i, j \in N$

Question: are there examples where no envy-free allocation exists? no proportional allocation?

Proportionality and envy-freeness

Let A be an allocation.

- A is proportional if $v_i(A_i) \ge \frac{1}{n}v_i(O)$ for every $i \in N$.
- ► A is envy-free if $v_i(A_i) \ge v_i(A_j)$ for all $i, j \in N$

Question: are there examples where no envy-free allocation exists? no proportional allocation?

Yes. $N = \{1, 2\}$, $O = \{o_1\}$, $v_1(o_1) = v_2(o_1) = 1$.

- ► For the allocation ({o₁}, Ø), 2 envies 1 and doesn't get proportional share.
- ► For the allocation (Ø, {o₁}), 1 envies 2 and doesn't get proportional share.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Deciding existence

Consider the following decision problem [and variant]: EXISTENCE OF PROPORTIONAL [ENVY-FREE] ALLOCATION

- ▶ Input: Additive valuations $(v_i(o))_{i \in N, o \in O}$.
- Question: Does there exist a (complete) allocation A that is proportional? [that is envy-free?]
- This problem is NP-complete.

Obvious reduction from PARTITION, works even for n = 2 agents.

- **Input**: List of numbers (x_1, \ldots, x_m)
- Question: Does there exist a partition (S_1, S_2) of $\{1, \ldots, m\}$ such that $\sum_{i \in S_1} x_i = \sum_{i \in S_2} x_i$?

Exercise: This only shows weak NP-hardness (binary encoding of numbers). Show the problem is strongly NP-hard (unrestricted n).

Some allocation rules

- ► Maximize utilitarian social welfare: Pick an allocation A that maximizes ∑_{i∈N} v_i(A_i).
- ► Maximize egalitarian social welfare: Pick an allocation A that maximizes min_{i∈N} v_i(A_i).
- Maximize Nash social welfare: Pick an allocation A that maximizes ∏_{i∈N} v_i(A_i).
 - This is the same as maximizing $\sum_{i \in N} \log v_i(A_i)$.
 - This is scale-free: multiplying the valuations of an agent by any factor does not change the optimal allocation.
 - ▶ It lies "between" utilitarian and egalitarian social welfare: $\min_{i \in N} v_i(A_i) \le \sqrt[n]{\prod_{i \in N} v_i(A_i)} \le \frac{1}{n} \sum_{i \in N} v_i(A_i).$ (AM-GM inequality)

Question: What is the computional complexity of computing optimal allocations for these objectives?

Envy-freeness up to 1 good (EF1)

An allocation is envy-free up to 1 good (EF1) if for all $i, j \in N$,

either $v_i(A_i) \ge v_i(A_j)$ or there is $o \in A_j$ with $v_i(A_i) \ge v_i(A_j \setminus \{o\})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Exercise: Find an EF1 allocation:

		<i>(</i>		
0	8	7	20	5
\bigcirc	9	11	12	8
0	9	10	18	3

Theorem: An EF1 allocation always exists.

Round robin rule

Consider the following procedure:

Repeatedly go through the agents in order $(1 \ 2 \ 3 \dots n \ 1 \ 2 \ 3 \ and$ on each agent's turn, let them pick an unpicked good that is most valuable to them.

Clearly, this is EF1 for agent 1 (in fact, he is envy-free).

But it is also EF1 for everyone else. Consider for example agent 3. Let him ignore the first item that agent 1 picked, and the first item that agent 2 picked. With these ignored, no envy remains.

Question: what are some other agent orderings that guarantee EF1? what are some that don't?

Question: Does this algorithm work for non-additive valuations?

Envy graph, cycle elimination

Given an allocation A, its envy graph is the directed graph with 1 vertex for each agent, and an arc from i to j if i envies j.

Consider some allocation *A*. Suppose the envy graph has a cycle 1-2-3-4-5-1, meaning that

 $\begin{aligned} &v_1(A_1) < v_1(A_2) \\ &v_2(A_2) < v_2(A_3) \\ &v_3(A_3) < v_3(A_4) \\ &v_4(A_4) < v_4(A_5) \\ &v_5(A_5) < v_5(A_1). \end{aligned}$

Then we can eliminate the cycle by giving A_2 to A_1 , A_3 to A_2 , etc. The resulting allocation is does not introduce any additional envy edges (and it is a Pareto improvement). If A was EF1, then same is true after.

Envy graph algorithm

- 1. Start with the empty (partial) allocation A.
- 2. For each item $o \leftarrow [o_1, o_2, \dots, o_m]$, in order:
 - Compute the envy graph for A, and update A by eliminating any cycles.
 - Now the envy graph has no cycles. Pick an agent *i* who is a source in the envy graph, i.e. is not envied by anybody.
 - Add o to A_i .

Theorem: This algorithm always terminates with an EF1 allocation.

Proof: partial allocation is EF1 throughout. Let A be allocation before adding o, B after. Then

$$v_j(B_j) = v_j(A_j) \stackrel{i \text{ source}}{\geq} v_j(A_i) = v_j(B_i \setminus \{o\}).$$

Question: Does this algorithm work for non-additive valuations?

An allocation A is Pareto-optimal if there is no other allocation B such that $v_i(A_i) \ge v_i(B_i)$ for all $i \in N$ and $v_i(A_i) > v_i(B_i)$ for some $i \in N$.

Questions: Which rules are Pareto-optimal? Is round robin? Is envy graph?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

An allocation A is Pareto-optimal if there is no other allocation B such that $v_i(A_i) \ge v_i(B_i)$ for all $i \in N$ and $v_i(A_i) > v_i(B_i)$ for some $i \in N$.

Questions: Which rules are Pareto-optimal? Is round robin? Is envy graph?

Question: Does there always exist a Pareto-optimal EF1 allocation?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Maximizing Nash Welfare is PO and EF1

The MNW (Max Nash Welfare) rule selects an allocation maximizing $\prod_{i \in N} v_i(A_i)$.

Clearly, this rule is PO.*

Proved in 2016: it also satisfies EF1.

- ► Fix any agents i, j ∈ N, and consider moving object o ∈ A_j from A_j to A_i.
- $\triangleright v_i(A_i \cup \{o\}) \cdot v_j(A_j \setminus \{o\}) \leq v_i(A_i) \cdot v_j(A_j).$

$$\blacktriangleright \Rightarrow: 1 - v_j(o)/v_j(A_j) \le 1 - v_i(o)/(v_i(A_i) + v_i(o)).$$

- ► ⇒: $v_j(o)/v_j(A_j) \ge v_i(o)/(v_i(A_i) + v_i(o^*))$ for $o^* \in \arg \max_{o' \in A_j} v_i(o').$
- Sum over all $o \in A_j$.

Maximizing Nash Welfare

- Used on Spliddit
- Can calculate with ILP.
- https://pref.tools/nash-indivisible/
- There is a pseudo-polynomial algorithm achieving PO + EF1 (i.e., polynomial in n, m, max_{i,o} v_i(o)).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Is EF1 enough?

Envy-freeness up to any good (EFX)

Definition: An allocation A satisfies EFX if for all $i, j \in N$, and for any good $o \in A_j$, we have

$$v_i(A_i) \ge v_i(A_j \setminus \{o\})$$

Open: Does there always exist an EFX allocation?

 Known: exists for two agents (easy), exists for three agents (very hard)

Known: exists for identical valuations.

- Method that works for two agents and for identical valuations: leximin
- Maximize the utility of the worst-off agent. Subject to this, maximize the utility of the second-worst-off agent, etc.

Non-additive valuations?

A valuation function $v_i : 2^O \to \mathbb{R}$ is submodular if for all $A \subseteq B$ and all $x \in O \setminus B$,

$$v_i(B\cup \{o\})-v_i(B)\leq v_i(A\cup \{o\})-v_i(A).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example: course allocation.

An EF1 allocation always exists for submodular violation.

 Open: does a PO + EF1 allocation always exist? Nash is not EF1.

What about chores?

A chore for agent *i* is an item with $v_i(o) < 0$.

We can define EF1 for mixed instances as follows: An allocation A is EF1 if for all $i, j \in N$, there is some object $o \in A_i \cup A_j$ such that

$$v_i(A_i \setminus \{o\}) \ge v_i(A_j \setminus \{o\})$$

- ► For 2 agents, can do PO + EF1.
- Can always do EF1 (without PO).
- Open: can we do PO + EF1 for 3+ agents? (open even for instances with only chores)