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Recap

I Lecture 1: Cake cutting (protocols for proportionality and
envy-freeness). Rent division (envy-freeness, maximizing
minimum utility).

I Lecture 2a: Allocation of indivisible items.
I Lecture 2b: Random assignment
I Lecture 3: Matching. Resident-hospital problem, house

swapping.



Exercise
Suppose we have a country consisting of 3 states. The country has
a parliament with 100 seats, and needs to decide how many seats go
to representatives of each state. It wants to do this proportional to
the population. The populations of the 3 states are:

State A 4 400
State B 45 300
State C 50 300

Alexander Hamilton (1757–1804) proposed this apportionment
method: Determine each state’s fair share (the quota) by dividing
its population by the total population and multiplying by the
number of available seats. Then either round the quota up or down
so that (1) the correct number of seats is allocated (2)we round up
the states with the highest fractional part of their quota. (The
fractional part of 3.141 is 0.141.)

Exercise: How would Hamilton’s method apportion the seats?



Exercise

Answer:

population quota rounded
State A 4 400 4.4 5
State B 45 300 45.3 45
State C 50 300 50.3 50

Exercise 2: What would happen if the legislature changed its mind
and allocates 101 seats to the 3 states?



Exercise

Answer 1:

population quota rounded
State A 4 400 4.4 5
State B 45 300 45.3 45
State C 50 300 50.3 50

Answer 2:

population quota rounded
State A 4 400 4.444 4
State B 45 300 45.753 46
State C 50 300 50.803 51



Exercise

Answer 1:

population quota rounded
State A 4 400 4.4 5
State B 45 300 45.3 45
State C 50 300 50.3 50

Exercise 3: Suppose a new census gives new population numbers:

population
State A 4 500
State B 45 200
State C 49 000

How does this affect the apportionment of 100 seats by Hamilton’s
method?



Exercise

Answer 1:

population quota rounded
State A 4 400 4.4 5
State B 45 300 45.3 45
State C 50 300 50.3 50

Answer 3:

population quota rounded
State A 4 500 4.5 5
State B 45 200 45.2 46
State C 49 000 49.0 49



Exercise

Answer 1:

population quota rounded
State A 4 400 4.4 5
State B 45 300 45.3 45
State C 50 300 50.3 50

Exercise 4: Suppose a new state is to join the union, and we increase
the parliament size to 102 seats. What will be the apportionment?

population
State A 4 400
State B 45 300
State C 50 300
State D 1 700



Exercise

Answer 1:

population quota rounded
State A 4 400 4.4 5
State B 45 300 45.3 45
State C 50 300 50.3 50

Answer 4:

population quota rounded
State A 4 400 4.41 4
State B 45 300 45.43 45
State C 50 300 50.45 51
State D 1 700 1.71 2



The Apportionment Problem
There are n states with populations p1, . . . , pn. House size h.
We write this as [h; p1, . . . , pn]. Example: [100; 4400, 45300, 50300]
Task: find seat counts s1, . . . , sn ∈ N with s1 + · · · + sn = h.

An apportionment method takes as input a problem [h; p1, . . . , pn]
and outputs seat counts.1

For any α > 0, we write [h; p1, . . . , pn] ≡ [h; αp1, . . . , αpn] and say
that these two problems are equivalent. For example

[100; 4400, 45300, 50300] ≡ [100; 4.4, 45.3, 50.3],

taking α = 1/1000. An apportionment method is scale-invariant if
it outputs the same seat counts for equivalent inputs.

Note that always [h; p1, . . . , pn] ≡ [h; q1, . . . , qn] where
qi = h · pi/

∑n
j=1 pj is the quota of state i .

1In this lecture, we will be sloppy about what happens in case there are ties,
for example if two states have the same seat count.
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The Apportionment Problem: Applications

I Apportion parliament seats to states by population. Done in
several countries, historically most noteworthily in the United
States House of Representatives.

I Apportion parliament seats to parties by vote count. Used in
several countries (notably in Europe) that use proportional
voting systems. If a party gets α% of the votes, then it should
get approximately α% of the seats.

I Allocation of identical items. Suppose there is a collection of
many identical items, and we need to allocate them to n
agents, where each agent has a claim on the items of different
strength. Examples:
I A transit system needs to assign trains or train drivers to metro

lines, in proportion to the number of passengers on the line.
I A school system assigning teachers to schools by their number

of students.
I Rounding percentages to integers summing to 100%.



Naïve rounding does not work

We might naïvely try to just round the quota qi of each state in the
usual way (for example 3.7 → 4 and 3.1 → 3). But that does not
work.

Consider the problem [1; 1, 1, 1].
In quota form, this is equivalent to [1; 1

3 , 1
3 , 1

3 ].
Rounding each quota, we get the seat assignment (0, 0, 0) which
does not sum to 1.



Method of Largest Remainder

Hamilton’s method is also known as Method of Largest Remainder.

Write a given problem [h; p1, . . . , pn] ≡ [h; q1, . . . , qn] in quota form.

The method works like this:
1. To each state i , assign bqic seats.
2. The remaining number of seats is t = h − bq1c − · · · − bqnc.

Take the t states with the largest remainder qi − bqic, and
assign each of them an extra seat.

Recall that bqic is the largest integer that is at most qi .
For example b3.14c = 3 and b10c = 10.



Method of Largest Remainder satisfies lower and upper
quota

Write a problem [h; p1, . . . , pn] ≡ [h; q1, . . . , qn] in quota form.

An apportionment method outputting s1, . . . , sn satisfies
1. lower quota if si > bqic for each state i ,
2. upper quota if si 6 dqie for each state i .

A method that satisfies both lower quota and upper quota is called
a quota method.

Theorem. The Method of Largest Remainder is a quota method.



Method of Largest Remainder: Example

state population quota lower q. upper q. remainder seats

1 264 2.64 2 3 0.64 3
2 361 3.61 3 4 0.61 3
3 375 3.75 3 4 0.75 4

total 1 000 10 8 11 2 10



Method of Largest Remainder gets “closest” to the quotas

We could look at apportionment as an optimization problem: find
the seat assignment s1, . . . , sn with s1 + · · · + sn = h that minimizes
the distance from the quotas, for example that minimizes

|s1 − q1| + · · · + |sn − qn|

or that minimizes

(s1 − q1)2 + · · · + (sn − qn)2

or more generally minimizes

|s1 − q1|p + · · · + |sn − qn|p , p > 1.

Theorem. The Method of Largest Remainder outputs the seat
assignment that minimizes each of these objective functions.



Method of Largest Remainder suffers from paradoxes

The Method of Largest Remainder may seem like the most natural,
even obvious, method for apportionment. But countries using it to
make decisions have found that it suffers from several so-called
apportionment paradoxes.

I The Alabama paradox. In 1880, the chief clerk of the U.S.
Census Bureau computed apportionments for all house sizes
between 275 and 350, and discovered that Alabama would get
8 seats with h = 299 but only 7 seats with h = 300.

I The population paradox. In 1900, Virginia lost a seat to Maine,
even though Virginia’s population was growing more rapidly.

I The new states paradox. In 1907, Oklahoma became a state
and would have deserved 5 seats. So the house size was
increased from 386 to 391. In the process, New York lost a
seat while Maine gained a seat.



House monotonicity

An apportionment method is house monotone if for every problem
P = [h; p1, . . . , pn] and enlarged problem P ′ = [h + 1; p1, . . . , pn],
writing s1, . . . , sn for the seat assignment of the method for problem
P , and s ′

1, . . . , s ′
n for problem P ′, we have

s ′
i > si for every state i .

A failure of house monotonicity is known as the Alabama paradox.

Theorem. The Method of Largest Remainder fails house
monotonicity.

Question: Do there exist any house monotone methods? How would
they work?



House monotonicity is failed by Largest Remainder
Let’s look at an example where the Method of Largest Remainder
fails house monotonicity.

state pop. quota lq uq remainder seats

1 145 1.45 1 2 0.45 2
2 340 3.40 3 4 0.40 3
3 515 5.15 5 6 0.15 5

total 1000 10 9 12 1 10

state pop. quota lq uq remainder seats

1 145 1.595 1 2 0.595 1
2 340 3.740 3 4 0.740 4
3 515 5.665 5 6 0.665 6

total 1000 11 9 12 1 11



Population paradox
Let’s look at an example where the Method of Largest Remainder
exhibits what has been called the population paradox.

state pop. quota lq uq remainder seats

1 145 1.45 1 2 0.45 2
2 340 3.40 3 4 0.40 3
3 515 5.15 5 6 0.15 5

total 1000 10 9 12 1 10

state pop. quota lq uq remainder seats

1 147↑ 1.55 1 2 0.55 1
2 338↓ 3.56 3 4 0.56 4
3 465↓ 4.89 4 5 0.89 5

total 950 10 8 11 2 10

A growing state loses a seat to a shrinking state.



Jefferson’s method

U.S. constitution, Article 1, says:
Representatives … shall be apportioned among the several states
… according to their respective numbers. … The number of
representatives shall not exceed one for every thirty thousand,
but each state shall have at least one representative.

Thomas Jefferson devised an apportionment method based on what
he understood were the principles behind this passage.



Jefferson’s method

Jefferson’s original method takes a fixed divisor D which is the
number of people that get 1 representative, e.g. D = 30 000.

His method then assigns si = bpi/Dc seats to each state i .
Jefferson rounds the values pi/D down, because the constitution
gives an upper bound on the number of representatives per number
of people.

Note that there is no reason to think that the values si sum to h;
Jefferson did not consider the house size fixed, but the divisor fixed.
[Given population growth since 1780, it would have been a bad idea
to keep D at 30k throughout; there would now be 11 000
representatives instead of 435.]

Idea: to get to a fixed house size h, vary the divisor D!



Jefferson’s method / D’Hondt method / Method of
Greatest Divisor

This idea leads to the following rule:

Given a problem [h; p1, . . . , pn] find some divisor D > 0 such that

bp1
D c + · · · + bpn

D c = h.

Then the output seat assignment is si = bpi
D c.

Such a divisor D always exists (if we handle ties reasonably) and we
call it the Jefferson divisor. All divisors D for which the equality
holds lead to the same seat assignment, so the method is
well-defined.

How to find D? Start with D =
∑n

i=1 pi/h. Then the seats will sum
up to less than h. While the seats sum up to less than h, decrease
D. If they sum up to more than h, increase D.



Jefferson’s method: Example

Suppose the target house size is h = 10.

D = 10 D = 8 D = 8.5

state pop. pi
D bpi

D c pi
D bpi

D c pi
D bpi

D c

1 15 1.50 1 1.87 1 1.76 1
2 32 3.20 3 4.00 4 3.76 3
3 53 5.30 5 6.62 6 6.24 6

total 100 9 11 10



Jefferson’s method is house monotone

We can easily see that Jefferson’s method is house monotone.

For a problem P = [h; p1, . . . , pn], suppose D is the Jefferson
divisor, so si = bpi

D c.

Next consider P ′ = [h + 1; p1, . . . , pn]. Note that

bp1
D c + · · · + bpn

D c = h < h + 1.

So the seats sum up to too few seats with the divisor D. Thus we
need to decrease D to make the sum larger. Thus, the Jefferson
divisor D ′ for problem P ′ satisfies D ′ < D.

Thus, for every state i , s ′
i = b pi

D′ c > bpi
D c = si . This is what house

monotonicity requires.



Jefferson’s method satisfies lower quota

Jefferson’s method satisfies lower quota.

Take a problem P = [h; p1, . . . , pn] and write it in quota form
P ′ = [h; q1, . . . , qn], i.e. with populations rescaled to sum to h.

Write D∗ =
∑n

i=1 pi/h. Note that qi = D∗ · pi .

Thus, running Jefferson’s method on P with divisor D∗ would lead
seat counts s∗

i = bqic, which would sum up to less than h:

bq1c + · · · + bqnc 6 q1 + · · · + qn = h.

Therefore the Jefferson divisor D must be smaller than D∗.

Hence si = bpi/Dc > bpi/D∗c = bqic, and thus Jefferson’s method
satisfies lower quota.



Jefferson’s method: population monotonicity

Population monotonicity: For two problems P and P ′, we have

si < s ′
i and sj > s ′

j =⇒ pi < p′
i or pj > p′

j .

Theorem: Jefferson’s method satisfies population monotonicity.

Proof. Write D and D ′ for the Jefferson divisors for problems P and
P ′. If si < s ′

i then we must have pi/D < p′
i /D ′. If sj > s ′

j then we
must have pj/D > p′

j/D ′. Rearranging, we deduce

p′
i >

D ′

D · pi and p′
j <

D ′

D · pj .

I If D′

D > 1 then p′
i > pi .

I If D′

D 6 1 then p′
j < pj .



Jefferson’s method: an equivalent definition

For each state i with population pi , we can write down the values of
D for which i gets at least 1, at least 2, etc. seats:

i gets at least 1 seat when using D ⇐⇒ bpi
D c > 1

⇐⇒ pi
D > 1

⇐⇒ D 6 pi .

More generally,

i gets at least k seats when using D ⇐⇒ bpi
D c > k

⇐⇒ D 6
pi
k .



Jefferson’s method: an equivalent definition

We saw that

i gets at least k seats when using D ⇐⇒ D 6
pi
k .

Thus, if I tell you D, you can figure out how many seats i gets by
counting how many of the following numbers are larger than D:

pi
1 ,

pi
2 ,

pi
3 ,

pi
4 ,

pi
5 , . . . ,

pi
h .

This suggests the equivalent “table definition” of Jefferson’s
method: write down the above values for each state (obtaining n · h
numbers). Select the h largest numbers on the list. If you selected
si of the numbers belonging to state i , then i gets si seats.



Jefferson’s method: table definition - example

Previous example with h = 10:

D = 10 D = 8 D = 8.5

state pop. pi
D bpi

D c pi
D bpi

D c pi
D bpi

D c

1 15 1.50 1 1.87 1 1.76 1
2 32 3.20 3 4.00 4 3.76 3
3 53 5.30 5 6.62 6 6.24 6

total 100 9 11 10

Table definition:

state pop. pi
1

pi
2

pi
3

pi
4

pi
5

pi
6

pi
7

1 15 15 7.5 5 3.75 3 2.5 2.14
2 32 32 16 10.67 8 6.4 5.33 4.57
3 53 53 26.5 17.67 13.2 10.6 8.83 7.57



Jefferson’s method: house monotonicity

With the equivalent definition, house monotonicity is obvious. We
just select an additional value in the table — note that the numbers
in the table do not change when h changes.

state pop. pi
1

pi
2

pi
3

pi
4

pi
5

pi
6

pi
7

1 15 15 7.5 5 3.75 3 2.5 2.14
2 32 32 16 10.67 8 6.4 5.33 4.57
3 53 53 26.5 17.67 13.2 10.6 8.83 7.57



Jefferson’s method favors large states

Example 1: (h = 10)

state pop. qi = pi/10 Largest Rem. pi/9.1 Jefferson

1 18 1.8 2 1.98 1
2 82 8.2 8 9.02 9

Example 2: (h = 10)

state pop. qi = pi/10 Largest Rem. pi/8 Jefferson

1 15 1.5 2 1.88 1
2 14 1.4 1 1.75 1
3 13 1.3 1 1.62 1
4 58 5.8 6 7.25 7

Theorem: Jefferson’s method fails upper quota.
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Jefferson’s method: another equivalent definition

Here is another equivalent definition for curiosity. It treats each
person as an individual who would like to be represented by as many
representatives as possible.

Let’s say that an individual from state i , when it gets si seats, has
utility

u(si) := 1 + 1
2 + 1

3 + 1
4 + · · · + 1

si
.

Now consider the seat assignment (s1, . . . , sn) (summing to h) that
maximizes

p1 · u(s1) + p2 · u(s2) + · · · + pn · u(sn).

This turns out to give the same apportionments as Jefferson’s rule.

You’ll see this objective function again later in the course, then
called “Proportional Approval Voting”.



Divisor methods

One can generalize the idea behind Jefferson’s method (based on
rounding down) to get other apportionment methods, based on
other rounding functions.

A rounding function f : R>0 → N is a weakly increasing function (if
x 6 y then f (x) 6 f (y)) such that f (n) = n for each integer n ∈ N.

Jefferson’s rule uses f (x) = bxc.

If f is a rounding function, the divisor method based on f is an
apportionment method that works as follows: Given a problem
[h; p1, . . . , pn], find a divisor D such that

f (p1
D ) + · · · + f (pn

D ) = h.

Then return the seat assignment with si = f (pi
D ) for every state i .



The 5 historic divisor methods

Every rounding function f can be specified by its dividing points
d1, d2, . . . , where dk is the lowest value (infimum) of x such that
f (x) > k. For example f (x) = bxc has dividing points 1, 2, 3, …

I Jefferson’s method (D’Hondt): 1, 2, 3, …, k + 1
I Webster’s method (Sainte-Laguë): 0.5, 1.5, 2.5, …, k + 1

2
I Hill’s method: 0, 1.414, 2.449, 3.464, …,

√
k(k + 1)

I Dean’s method: 0, 1.333, 2.400, 3.429, …, k(k + 1)/(k + 1
2)

I Adam’s method: 0, 1, 2, 3, …, k



Properties of divisor methods

I Jefferson’s method is the only divisor method that satisfies
lower quota.

I Adam’s method is the only divisor method that satisfies upper
quota.

Hence, no divisor method is a quota method.

I Every divisor method satisfies house monotonicity.
I Every divisor method satisfies population monotonicity.

The proofs are the same as for Jefferson, replacing b·c by f (·)
everywhere.

I Every divisor method has an equivalent “table definition”,
based on a table filled with the numbers pi/d1, pi/d2, pi/d3.



Why these? Huntington’s criteria
Apportionment aims to faithfully convert populations to seats: the
two vectors should be as proportional to each other as possible.
It would be bad for an apportionment method to select an outcome
where state i gets many more seats per capita than does state j:

si
pi

� sj
pj

. (bad)

Thus, a natural measure of inequality between states would be∣∣∣∣∣ si
pi

− sj
pj

∣∣∣∣∣ .

One way to implement this idea is to look for an apportionment
(s1, . . . , sn) that is stable, where there is no way to transfer a seat
from one state to another and thereby reducing inequality:

for all i , j:
∣∣∣∣∣si − 1

pi
− sj + 1

pj

∣∣∣∣∣ >
∣∣∣∣∣ si
pi

− sj
pj

∣∣∣∣∣ . (stability)



Why these? Huntington’s criteria

for all i , j:
∣∣∣∣∣si − 1

pi
− sj + 1

pj

∣∣∣∣∣ >
∣∣∣∣∣ si
pi

− sj
pj

∣∣∣∣∣ . (stability)

Does a stable apportionment always exist?
Rewrite the definition: for all pairs i , j with si

pi
> sj

pj
, we must have

sj + 1
pj

− si − 1
pi

>
si
pi

− sj
pj

⇐⇒ pi

si − 1
2
>

pj

sj + 1
2

.

The latter is the defining inequality for apportionments selected by
Webster’s method (e.g., it says that if in the Webster table, we
select only the highest entries, we get a stable outcome). So stable
apportionments exists, and the rule selecting a stable apportionment
turns out to be house and population monotonic!

Question: Is this a convincing argument for using Webster?



Why these? Huntington’s criteria

Each of the five historic apportionment methods are stable under a
different inequality measure (written for all i , j with si

pi
> sj

pj
).

Adams Dean Hill Webster Jefferson

si − sj
pi
pj

pj
sj

− pi
si

si /pi
sj/pj

− 1 si
pi

− sj
pj

si
pj
pi

− sj

(There are 16 ways of rewriting si
pi

>
sj
pj

. 4 of the 16 do not always
have stable apportionments. The rest lead to one of the 5 methods.)

Huntington: It is better to compare numbers by relative difference:

|y − z|
min(y , z) .

Comparing si
pi

and sj
pj

using relative difference in each of the 16 ways
all lead to Hill’s method!



Bias; ranking by favoring small states
We have seen that Jefferson’s method seems to favor large states.
Similar examples show that Adam’s method favors small states.

In 1929, U.S. congress asked the National Academy of Sciences for
an opinion. Its report favored Hill’s method because it minimizes
relative differences and “occupies mathematically a neutral position
with respect to the emphasis on larger and smaller states”.

Let’s say that method M favors small states relative to method M ′,
written M C M ′, if for all problems [h; p1, . . . , pn], the seat counts
(si) and (s ′

i ) of these methods satisfy

pi < pj implies either s ′
i ≥ si or s ′

j ≤ sj .

Not all pairs of methods can be compared in this way, but:

Adams C Dean C Hill C Webster C Jefferson.

Data suggests that Webster is the least biased in either direction.



Merger incentives

Another way to compare the different divisor methods comes from
the case where we use apportionment to assign seats to parties in
proportion to their vote counts.

Suppose a country uses D’Hondt’s method (= Jefferson), as Austria
does for example. We know this method favors large parties.
Therefore, two parties may try to merge to get more seats.

This can work:

[10; 10, 8, 5, 2] 7→ (5, 3, 2, 0) while [10; 10, 8, 7] 7→ (4, 3, 3)

In fact, it can never hurt! D’Hondt encourages mergers:
I If M[h; p1, p2, p3, . . . , pn] 7→ (s1, s2, s3 . . . , sn) and

M[h; p1 + p2, p3, . . . , pn] 7→ (s ′
1, s ′

3 . . . , s ′
n), then s ′

1 > s1 + s2.



Merger incentives

D’Hondt encourages mergers (and is the unique divisor method
doing so):
I If M[h; p1, p2, p3, . . . , pn] 7→ (s1, s2, s3 . . . , sn) and

M[h; p1 + p2, p3, . . . , pn] 7→ (s ′
1, s ′

3 . . . , s ′
n), then s ′

1 > s1 + s2.

Similarly, Adam’s discourages mergers (and is the unique divisor
method doing so):
I If M[h; p1, p2, p3, . . . , pn] 7→ (s1, s2, s3 . . . , sn) and

M[h; p1 + p2, p3, . . . , pn] 7→ (s ′
1, s ′

3 . . . , s ′
n), then s ′

1 6 s1 + s2.



Arguments in favor of divisor methods

I The only population monotonic rules that we have seen. (In
fact, if you appropriately strengthen population monotonicity to
handle ties, and add some background assumptions, then one
can prove that the divisor methods are exactly the methods
satisfying population monotonicity.)

I They satisfy coherence: each part of a fair solution should be
fair. Suppose that a method says

[h; p1, p2, . . . , pn] 7→ (s1, s2, . . . , sn).

Then on the subproblem [s1 + s2; p1, p2], the rule must select
(s1, s2). (This property also characterizes divisor methods,
under background assumptions.)



Can quota methods do better?

So far we have seen only 1 quota method, the Method of Largest
Remainder. It violates both house monotonicity and population
monotonicity. On the other hand, divisor methods satisfy these
properties but are not quota methods.

Can we find a better quota method?

Attempt: Lowndes’s method: Give each state its lower quota.then
assign additional seats in descending order of the quantity

qi − bqic
qi

.

But this also fails house and population monotonicity. (Similarly for
many other attempts following this scheme.)



A house monotone quota method

Balinski and Young (1975) discovered a quota method that is house
monotone.

Consider the table definition of Jefferson’s method. Write the table
containing the entries pi/k for each state i . Now count the h
largest numbers, but skip them if selecting the number would
violate upper quota.

Example: [12; 7, 22, 71].



A house monotone quota method

190 A Mathematical Look at Politics

Adding these n inequalities yields

a1 + a2 + · · ·+ an � (h+ 1)p1/p+ (h+ 1)p2/p+ · · ·+ (h+ 1)pn/p

= (p1 + p2 + · · ·+ pn)(h+ 1)/p

= p(h+ 1)/p = h+ 1.

This is impossible, because the left side of this inequality equals exactly
h, which is not as large as h+1. Hence at least one state must be eligible
to receive the (h+ 1)st seat.

Let us examine the method of Balinski and Young at work on the
example of Table 10.1. We expand Table 10.1 to produce Table 10.2,
which begins with the same columns but also includes data about stan-
dard quotas. Je↵erson’s method makes no reference to standard quotas
at all, but the method of Balinski and Young requires these data in
order to test whether numbers will exceed upper quota. Table 10.2 high-
lights the places where the Je↵erson method violates upper quota. In
the rightmost three columns of Table 10.2, one sees the Balinski–Young
apportionment numbers.

h critical divisors Je↵erson standard quotas B -Y

A B C A B C A B C A B C

0 0 0 0 0 0 0

1 7 22 71 0 0 1 0.07 0.22 0.71 0 0 1

2 7 22 35.5 0 0 2 0.14 0.44 1.42 0 0 2

3 7 22 23.7 0 0 3 0.21 0.66 2.13 0 0 3

4 7 22 17.8 0 1 3 0.28 0.88 2.84 0 1 3

5 7 11 17.8 0 1 4 0.35 1.10 3.55 0 1 4

6 7 11 14.2 0 1 5 0.42 1.32 4.26 0 1 5

7 7 11 11.8 0 1 6 0.49 1.54 4.97 0 2 5

8 7 11 10.1 0 2 6 0.56 1.76 5.68 0 2 6

9 7 7.33 10.1 0 2 7 0.63 1.98 6.39 0 2 7

10 7 7.33 8.88 0 2 8 0.70 2.20 7.10 0 2 8

11 7 7.33 7.89 0 2 9 0.77 2.42 7.81 0 3 8

12 7 7.33 7.1 0 3 9 0.84 2.64 8.52 0 3 9

13 7 5.5 7.1 0 3 10 0.91 2.86 9.23 0 3 10

14 7 5.5 6.45 1 3 10 0.98 3.08 9.94 1 3 10

15 3.5 5.5 6.45 1 3 11 1.05 3.30 10.65 1 3 11

Table 10.2 The method of Balinski and Young

For each h, the method of Balinski and Young picks one state to



Balinski–Young impossibility theorem

Theorem: There exists no quota method that is population
monotone.

Recall that an apportionment method is population monotone if
when we consider two problems P and P ′, then

si < s ′
i and sj > s ′

j =⇒ pi < p′
i or pj > p′

j .

Balinski–Young proved a weaker statement that also assumed
order-preservation: if pi > pj then si > sj (larger states get more
seats). This is a mild condition and makes the proof much easier.
But it was later shown that this extra assumption is not necessary.



Balinski–Young impossibility theorem: Proof

Theorem: No quota method is population monotone.

Consider house size h = 10.
State pop. qi

1 699 6.99
2 52 0.52
3 50 0.50
4 199 1.99

By upper quota, s1 6 7 and s4 6 2.
Thus either state 2 or 3 gets at
least 1 seat. By order preservation,
s2 > 1.

State pop. qi
1 680 8.02
2 55 0.65
3 56 0.66
4 57 0.67

By lower quota, s ′
1 > 8. Thus, not

all of states 2,3,4 can get a seat.
By order preservation, s ′

2 = 0.

We have constructed an example with s ′
1 > s1 and s ′

2 < s2 yet
p′

1 < p1 and p′
2 > p2.



Biapportionment

Some countries face a double apportionment problem: they want to
apportion parliament seats to representatives from different states in
proportion to state population, and simultaneously apportion seats
to parties in proportion to (nationwide) party vote count.

Not a good idea to treat each state separately: Assume we have 100
districts, and each district elects 5 candidates, so h = 500. Suppose
there are two parties. In each district, party A gets 15 votes and
party B gets 32 votes.

If we use D’Hondt’s method in each district, 1 seat goes to party A
and 4 seats go to party B. So party A gets 100 seats, while it
deserves

15
15 + 32 · 500 ≈ 160.



Biapportionment

Input to a biapportionment problem: a vote matrix, a desired seat
count for each row, and a desired seat count for each column. (Can
get desired seat counts using an apportionment method applied to
the sums of each row/column.)

v11 v12 · · · v1n r1
v21 v22 · · · v2n r2
...

... . . . ...
...

vm1 vm2 · · · vmn rm

c1 c2 · · · cn h



Biapportionment

Main idea: apply rounding function to each value in the matrix.

f (v11) f (v12) · · · f (v1n) r1
f (v21) f (v22) · · · f (v2n) r2

...
... . . . ...

...
f (vm1) f (vm2) · · · f (vmn) rm

c1 c2 · · · cn h

But this will violate the desired seat counts. Thus, we need to
rescale rows and columns.



Biapportionment

Biapportionment divisor method: find divisors for each row and each
column; then round.

f (v11/D1E1) f (v12/D1E2) · · · f (v1n/D1En) r1 D1
f (v21/D2E1) f (v22/D2E2) · · · f (v2n/D2En) r2 D2

...
... . . . ...

...
...

f (vm1/DmE1) f (vm2/DmE2) · · · f (vmn/DmEn) rm Dm

c1 c2 · · · cn h
E1 E2 · · · En

Theorem (ignoring ties): There exist row and column divisors such
that all the desired row and column totals are respected. The
resulting seat assignment is unique.



Random apportionment

Given a problem, return a lottery over seat assignments.
I A lottery is ex ante proportional if each state gets qi seats in

expectation.
I A lottery satisfies ex post quota if every seat assignment with

positive probability satisfies both lower and upper quota.

Question: Does such a lottery always exist?

Question: Can we define house/population monotonicity in this
setting?



Allocation of indivisible items with weighted agents
I N = {1, . . . , n}, a set of agents, each with a weight wi > 0.
I O = {o1, . . . , om}, a set of indivisible objects.
I Additive valuations ui : O → R>0.
I Task: find an allocation (A1, . . . , An) of pairwise disjoint

bundles.
An allocation A satisfies weighted EF1 if for all i , j ∈ N with Aj 6= ∅,
there exists an item o ∈ Aj such that

ui(Ai)
wi

>
ui(Aj \ {o})

wj
.

An allocation A satisfies weighted PROP1 if for all i ∈ N there
exists an item o 6∈ Ai such that

ui(Ai) + ui(o) > wi
w1 + · · · + wn

· ui(O).



Allocation of indivisible items with weighted agents

Using a house monotone apportionment method to obtain an
assignment.

Consider the problem [m; w1, . . . , wn]. Applying a house monotone
apportionment method, we obtain a sequence of agents
i1, i2, i3, . . . , im, with repetitions. We can now take this as a picking
sequence: we go through the sequence and let each agent pick their
favorite item that has not been picked yet.

I If we use Adam’s method (f (x) = dxe), we obtain an
allocation that satisfies weighted EF1.

I If we use Jefferson’s method (f (x) = bxc), we obtain an
allocation that satisfies weighted PROP1.

These are the unique divisor methods giving the respective
guarantee.



Other topics

I Random apportionment
I Degressive proportionality (European parliament)


